
Journal of Engineering Science and Technology Review 17 (4) (2024) 198-204 
 

Research Article 
 

 
Comprehensive Study of YOLO Versions for Front and Rear-View Classification of 

Vehicles in Context of Indian Roads 
 

Manas Kumar Rath and Prasanta Kumar Swain* 
 

Department of Computer Application, MSCB University, Baripada, India 
 

Received 14 May 2024; Accepted 3 July 2024 
___________________________________________________________________________________________ 
 
Abstract 
 

Ever since Computer Vision was introduced, humanity has seen various ways to detect or classify objects of various 
types. Depending upon the context in consideration, the performances of models vary with respect to their evolution or 
even upon the nature of the data in hand. The classification of front or rear views in vehicles forms an integral part when 
we go ahead with deciding whether a given vehicle is moving in the correct lane. In the context of Indian streets, we have 
various challenges like rural unmarked roads, faded markings, shaded situations from poles or trees, etc. Hence instead of 
detecting lanes, an alternative way is to detect whether the vehicle(s) ahead is facing toward or away from our vehicle. 
Various deep learning architectures have been proposed in this aspect to detect or classify objects like the networks from 
Visual Geometry Group, You Only Look Once, Inception Networks, Residual Networks, etc. In this paper, we have 
performed a comparative analysis of performance on various versions of You Only Look Once for its evolution over 
time. 
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1.  Introduction 
 
The various problems like faded lane markings, improper 
rural roads, etc. make it quite challenging to address the 
problem through the street’s view. The real-time 
classification of vehicles’ views in the non-ideal context 
of Indian lanes is an integral part of detecting whether a 
vehicle is moving in the correct lane. Hence, we address 
this problem of correct lane detection using the view of 
other vehicles(s) ahead. Considering our own vehicle as a 
reference, the dash-cam acquires the images of the 
vehicle(s) ahead. Then is image is classified into whether 
it is the rear view or the front view of the vehicle. If the 
dashcam detects the front view, it means that our own 
vehicle is in the wrong lane and vice versa. We have 
comprehensively surveyed the performances of various 
main versions of YOLO (You Only Look Once) 
architecture from version 1 to version 8. Other versions of 
YOLO like YOLOX [1], YOLOR [2], DAMO-YOLO 
[3], PP-YOLO [4], etc. have not been considered in this 
study. “Table 1” shows the evolution of YOLO 
algorithms that we’ll be using ahead in this paper. 
 Also, the COCO (Common Objects in Consideration) 
dataset by Microsoft [5] is a widely used one when it comes 
to training and testing the models. Other datasets include the 
GTI’s vehicle image database [6], Caltech Database [7], and 
Tu-Graz-02 Database [8]. We’ve used our own dataset 
which will be discussed later in one of the subsequent 
sections. 
 Throughout our work, we discuss various aspects of each 
version – architecture, features, strengths, and performance 
based on mean average precision. Since, for Indian roads 
and vehicles, it isn’t that easy to classify the front or rear of 

vehicles (due to the conditions mentioned previously), 
hence, classification based on number plate or structure 
might need to be addressed to classify the vehicle’s front or 
rear. 
 In this section, we have introduced the concept of 
classification of the view of vehicles and its significance. 
Section 1.1 discussed the system model where we described 
the dataset that has been manually collected and used for our 
analysis. The literature survey of previously published works 
has been carried out in Section 2. Section 3 describes the 
proposed work, the accuracy metrics used, and its 
implementation through each of the used versions of YOLO. 
 
Table 1. Evolution of YOLO. 
Year Version Features Notable 

Improvements 

2015 YOLO-V1 Real-time detection, 
initial version 

Speed and 
simplicity 

2016 YOLO-V2 Improved localization 
with anchor boxes 

Accuracy 
enhancements 

2018 YOLO-V3 Feature pyramid networks 
(FPN) 

Multi-scale 
detection 

2020 YOLO-V4, 
YOLO-V5 

CSPDarknet53, PANet, 
lightweight YOLO-V5 

State-of-the-art 
performance 

2022 YOLO-V6, 
YOLO-V7 

Unofficial iterations, 
optimization 

Speed and 
efficiency 

2023 YOLO-V8 Efficient Net backbone, 
competitive performance 

Balance of 
speed/accuracy 

2024 YOLO-V9 PGI, GELAN, 
information bottleneck 

Efficiency, 
accuracy 

 
 The results have been discussed in Section 4, followed 
by which we concluded the work in Section 5. The front and 
rear views of a training sample of a vehicle are shown in 
“Fig 1” below. 
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Fig. 1. Front and Rear views of a vehicle 
 
System Model 
The data for the system model is prepared by keeping the 
Indian road and driving patterns in the form of images 
which are taken from different video sources. This is 
adopted with 28 Frames per second by own installed 
camera in the vehicle. In the first approach, 30000 images 
were collected to prepare the dataset. The basic 
challenges found in general Indian road infrastructure is 
its unstructuredness, featuring irregular merge points, 
faded or absent lane markings. Additionally, there are no 
strict restrictions on vehicle types where one can find all 
type of vehicles moving, resulting in diverse traffic 
scenarios. Indian roads exhibit irregular and unpredictable 
turns and drivers frequently encounter challenges such as 
illegal parking on the roadside, wrong-side driving and 
even wrong-way movement. These characteristics make 
Indian roads a complex and dynamic environment for 
developing driving models. 
 The dataset includes both the front and rear captures 
of different vehicles. Considering the 80:20 ratio we split 
the train and test set. “Fig 2”, “Fig 3”, and “Fig 4” are 
some of the glimpses of the captured images. 
 

 
Fig. 2. Rear view of cars 

 

 
Fig. 3. Rear view of a bus 
 
 It can easily be understood in “Fig 5” and “Fig 6” below 
that the images are taken during nighttime. This also 
included making the dataset robust and getting trained with 
more accuracy and efficiency in different light conditions. 
 In “Fig 6” it can be observed that there are so many 
different types of vehicles on the move. The image is also 
taken at nighttime with different intensity of light. The 
model is trained well to determine the front and rear of the 
different vehicles in such a complex traffic environment as 
well. This outcome can suffice whether our vehicle is on the 

correct lane or not by aggregating the overall data.     
 

 
Fig. 4. Front view of Autorickshaws, Truck and Cars 
 

 
Fig. 5. Rear View of autorickshaw and car during the night 

 

 
Fig. 6. Rear View of cars during the night 
 
 
2. Related Work 
 
It has been observed that a lot of complexities are 
encountered in Indian road traffic. Considering this issue, 
certain approaches are being addressed. Lane detection in 
complex Indian environments, addressing the poor road 
conditions mentioned above, has been worked upon in [9]. 
Using the CNN architecture, NVIDIA also has proposed to 
keep track of the steering movements in a real-time 
environment for automated vehicles [10]. 

For an end-to-end automated vehicle, steering angles 
have been predicted [11] using the architecture in [10]. A 
comparison of performances has been performed in [12] for 
Jacinto Net, VGG-19, and CNN in [10]. Authors in [13] 
have improved the Jacinto-Net which shows the same 
performance for Heterogeneous Multi-core platforms. In 
[14], the authors have proposed two approaches to execute 
the objective. The rear-view dimensions and edges are taken 
into consideration in the first method. In the second 
approach, considering orientation, position, eccentricity, and 
other features of its backlights it has been observed that the 
outcome is 89%. 

In the mentioned work [15], the automatic recognition of 
vehicle makes and model (MMR) using frontal views is 
addressed, The two-stage vision-based consideration for 
effective front and rear classification is addressed in[16] 
using Eigen space and SVM. Authors in The MMR using 
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local-tiled deep networks are addressed by the authors in 
[17]. 

In [20], VOC and COCO datasets are taken into 
consideration. Using all the main YOLO architectures, the 
front-view and the rear-view classification of vehicles are 
compared. Following the description of the dataset, the 
accuracy metric and the version architectures are presented 
along with performances individually. 

The publicly available datasets contain images of roads 
that are well-marked and maintained. But in the context of 
Indian roads, the previously implemented works fail to work 
properly due to the faded lane markings and even unmarked 
lanes at various places. Hence, we took this approach of 
analyzing the view of the other vehicles instead of the lanes. 
The view classification is done after regular intervals of time 
so that sometimes even if no vehicle is present ahead, it 
would carry on with the previous flag signal until the 
algorithm runs for the next time. 
 
 
3. Proposed Work 
 
We used Average Precision (AP) or Mean Average 
Precision (MAP), a common metric for object detection 
techniques. Followed by which a post-processing technique 
called Non-Maximum Suppression (NMS) has been 
leveraged which reduces the number of overlapping 
bounding boxes to improve the detection and classification 
quality. Both have been explained in detail in [23].  

However, in [23] ImageNet dataset [21] and the 
PASCAL VOC dataset have been employed to train YOLO 
V1 and YOLO V2. The rest of the versions have been 
trained using the COCO dataset. 
 
3.1. YOLO V1 
This consists of 24 convolutional layers with 2 fully 
connected layers at the end. The architecture is explained in 
detail originally in [20]. These convolutional layers are used 
to extract features from the image followed by which the 
fully connected layers predict probabilities and the 
coordinates. It is important to note that the model was 
originally trained using the PASCAL VOC dataset, which 
consists of 20 classes (i.e., C = 20). For our dataset, since C 
= 2, the output dimensions of the tensor turned out to be 7 × 
7 × 12. We’ve tweaked all the other models similarly to 
meet our requirements. The figure for YOLO-V1 is given in 
“Fig 7”. 
 

 
Fig. 7. YOLO V1 architecture. 
 
3.2. YOLO V2 
This is an architecture based on Darknet-19 [24] which has 
19 convolutional and 5 max-pooling layers. Several other 
improvements were made to YOLO-V1 so that 9000 
categories can be classified using it. The following 

modifications were made: 
 
▪ Batch normalization on all the convolutional layers. 
▪ The model was fine-tuned for 10 epochs with a 
resolution of 448×448 for high-resolution classification. 
▪ The dense layers were removed, and fully convolutional 
layers were used. 
▪ Prior boxes were used for predicting the bounding boxes. 
▪ k-means clustering was used by the authors to find good 
priors. 
▪ Trained using images of multiple sizes ranging from 
320×320 to 608×608 in batches of 10. 
▪ It predicts local coordinates, unlike offsets as predicted 
by other methods. 
▪ One pooling layer was removed to obtain a grid of 
13×13 from an input size of 416×416. Also, a passthrough 
layer has been used so that the features aren’t lost via spatial 
subsampling. The architecture of YOLO-V2 [25] has been 
shown in “Fig 8”. 

 
Fig. 8. YOLO V2 architecture. 
 
3.3. YOLO V3 
This architecture in “Fig 9” is based on Dark-net-53 [26] 
which has 53 convolutional layers and the max-pooling 
layers in YOLO-V2 have been replaced by stride 
convolutions. In addition to that some residual connections 
have also been made. Several other improvements were 
made to YOLO-V2. The following modifications were 
made: 
 
▪ Batch normalization and Leaky Rectified Linear Unit 
activation function on all the convolutional layers. 
▪ Across the whole network, the residual connections 
connect the input of 1 × 1 with the output of 3 × 3 
convolutions in size. 
▪ The predictions are made for multiple grid sizes, hence 
enabling us to acquire finer detailed boxes, hereby 
improving the predictions for smaller objects. 
 

 
Fig. 9. YOLO V3 architecture. 
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3.4. YOLO V4 
After 2 years, in 2020 the next version of YOLO-V4 was 
released [28]. This is based on the architecture of modern 
object detectors which collectively consist of a backbone 
(CSP DarkNet 53), a neck (SPP + PANet), and a head 
(YOLO-V3). The input goes to the backbone which is 
essentially the feature extractor.  
 The neck is essentially used for multi-resolution feature 
aggregation. The head generates final predictions as outputs. 
A schematic architecture [29] is shown in “Fig 10”.The key 
changes [23] in this version include – Bag of Specials (BoS) 
integration, Bag of Freebies (BoF) integration, Self-
Adversarial training, and Genetic algorithms for fine-tuning 
parameters. 
 The architecture for YOLO-V4 is shown in “Fig 11”. It 
consists of the following key modules: 
 
• CBM: Convolution, Batch Normalization, Mish 
Activation. 
• CBL: Convolution, Batch Normalization, Leaky ReLU 
Activation 
• UP: Up-sampling 
• SPP: Spatial Pyramid Pooling 
• PANet: Path Aggregation Network. 
 

 
Fig. 10. Modern Object Detection. 

 

 
Fig. 11. YOLO-V4 architecture. 
 
3.5. YOLO V5 
This has been developed using PyTorch (Bottle Neck CSP) 
instead of DarkNet. It provides 5 scaled versions namely – 
nano, small, medium, large, and extra-large versions. As 
such, there has been no official paper released for YOLO-V5 
as such, but Ultralytics actively maintains this open-source 
model. Authors in [30] have used YOLO-V5 for their image 

localization and classification tasks. The official architecture 
as published by Ultralytics is shown in “Fig 12”. 
 

 
Fig. 12. YOLO V5 architecture. 
 
3.6. YOLO V6 
Published in [31] by the Meituan Vision AI Department, this 
model uses a backbone based on RepVGG (EfficientRep) 
where there is high parallelism. The neck utilizes PANet 
integrated with RepBlocks or CSPStackNet. The head is 
decoupled, inspired by YOLOX. The architecture is shown 
in “Fig 13”. 
 

 
Fig. 13. YOLO V6 architecture. 
 
 The new features in this architecture include: 
 

• Label assignment using Task Alignment One-step 
Object Detection [32]. 

• VariFocal loss metric [33] for classification and 
SIoU/GIoU metric loss [34] for regression. 

• Self-distillation for both above-mentioned tasks. 
• Quantization scheme using re-parameterized 

optimizers [35] and channel-wise distillation [36] for 
low latency detection. 

 
3.7. YOLO V7 
This version of YOLO [37] was published by the same 
authors as YOLO-V4. It simply out powered all known 
object detectors with respect to accuracy and speed in the 
range of 5 FPS to 160 FPS. The training time increased, but 
the accuracy improved without affecting the speed much. 
The major changes in this architecture include: 
 

• Extended Efficient Layer Aggregation Network (E-
ELAN) is a way through which models train and fit 
easily by controlling the shortest longest gradient path. 
• Model scaling since YOLO-V7 is an architecture 
(“Fig 14”) based on concatenation. By using 
techniques such as width or depth scaling, the ratio 
between input and output channels is changed leading 
to less hardware usage by the model as shown in “Fig 
15”. 
• The identity connection in RepConv used in 
YOLO-V6, seemed to affect the concatenation in 
DenseNet [38] and residual in ResNet [39]. Hence it 
was removed and renamed to RepConvN. 
• Coarse labels for auxiliary (training) and fine 



Manas Kumar Rath and Prasanta Kumar Swain/Journal of Engineering Science and Technology Review 17 (4) (2024) 198 - 204 

 

  
202 

labels for the lead head (output). 
 

 
Fig. 14. YOLO V7 architecture. 
 

 
Fig. 15. Scaling in YOLO-V6 architecture. 
 

 
Fig. 16. YOLO V8 architecture. 
 
3.8. YOLO V8 
This version was again released by Ultralytics [40] in 2023. 

In addition to continuing its trend from YOLO-V5, it used 
mosaic augmentation for training, except in the last 10 
epochs so that it doesn’t get detrimental. 
 It also provides 5 scaled versions namely – nano, small, 
medium, large & extra-large versions. It can be run using a 
command line interface or also a pip module. The official 
architecture released by Ultralytics is shown in “Fig 16” for 
YOLO-V8. 
 
 
4. Results and Discussion 
 
As discussed in Section 3 above, Average Precision is the 
metric that has been used to compare these models, trained 
on our gathered dataset. “Table 2” summarizes the various 
aspects of the architectures and the accuracies of the model 
outputs. 
 
Table 2. Evolution of YOLO 
Year Version Framework Anchor 

Box Backbone AP 

2015 1 Darknet × Darknet 24 0.711 
2016 2 Darknet ü Darknet 19 0.713 
2018 3 Darknet ü Darknet 53 0.462 
2020 4 Darknet ü CSPDarknet53 0.420 

2020 5 Pytorch ü Modified CSP 
V7 0.558 

2022 6 Pytorch × Efficient Rep 0.515 
2022 7 Pytorch × RepConvN 0.502 
2023 8 Pytorch × YOLO V8 0.455 
 
 From the table above, we can see that the mean average 
precision of YOLO-V4 is 0.42, hence proving to be the best 
fit for our data and task in hand, followed by YOLO-V8 & 
YOLO-V3 with AP values of 0.45 & 0.46 respectively. The 
largest precision values were given by YOLO-V1 & YOLO-
V2 with approximate values of 0.71 each. 
 The results corresponding to YOLO-V4 implementation 
are shown in figures 17 to 23, indicating the front and rear 
views of vehicles in the frame. “Fig 17” below shows the 
rear view of a bus moving in the same lane as that of our 
vehicle. “Fig 18” shows the front view of the vehicles being 
detected on a busy street. “Fig 19” shows the rear views of 
vehicles being detected during the night. “Fig 20” also 
shows the rear views detected during the daytime. “Fig 21” 
shows the rear view of a car detected during the night. “Fig 
22” shows the front view of cars detected during the night. 
“Fig 23” shows both the rear and frontal views of cars 
detected from a distance. 
 

 
Fig. 17. Rear view detection of a bus moving in a distance 
 
As the challenges discussed in subsection 1.1, with reference 
to Indian road context we observed that 
 

• The implemented YOLO-V4 model works well even 
during the night to detect the front and rear views of 
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vehicles. 
• The model also works well to detect the views of 

distant vehicles. 
• The model is successfully able to detect the front and 

rear views of cars, buses, autorickshaws, and trucks. 
 

 
Fig. 18. Front views of vehicles detected on a busy road 

 

 
Fig. 19. Rear view of vehicles detected during the night 
 

 
Fig. 20. Rear view of vehicles detected on a road 

 

 
Fig. 21. Rear view of a car detected during the night 
 

 
Fig. 22. Front view of cars detected during the night 

 

 
Fig. 23. Rear & front views of distant vehicles detected on the road 
 
 
 If implemented along with an ADAS, the control can 
automatically detect whether our vehicle is in the correct 
lane or not based on the views of other vehicles on the street. 
This can be seen in “Fig. 18” and “Fig. 22” that our vehicle 
is on the wrong side of the lane. This scheme can be 
extended and implemented even in Indian lanes where the 
lane markings are faded, absent, or even sometimes 
unmarked. This creates a significant milestone in our work, 
where in the context of Indian lanes we can work ahead after 
detection of the view of the vehicles in consideration. 
 
 
5. Conclusion and Future Scope 
 
The 8 main versions of YOLO were studied, trained & tested 
with our collected dataset aiming to minimize the mean 
Average Precision metric. After running the codes and 
validating the results, we found that YOLO-V4 gave us the 
best AP value. Version 9 is just released and these datasets 
or more can be further used on it, especially for 
classification use cases. 
 Other versions of YOLO such as YOLOR, YOLOX, 
DAMO-YOLO, etc. can also be trained & tested with our 
dataset to see if any improvements can be made. In addition 
to that, YOLO models which are yet to be proposed also find 
a scope to be studied and trained with the same dataset to 
look for improvements in the future. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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