
Journal of Engineering Science and Technology Review 17 (4) (2024) 198-204

Research Article

Comprehensive Study of YOLO Versions for Front and Rear-View Classification of

Vehicles in Context of Indian Roads

Manas Kumar Rath and Prasanta Kumar Swain*

Department of Computer Application, MSCB University, Baripada, India

Received 14 May 2024; Accepted 3 July 2024

Abstract

Ever since Computer Vision was introduced, humanity has seen various ways to detect or classify objects of various
types. Depending upon the context in consideration, the performances of models vary with respect to their evolution or
even upon the nature of the data in hand. The classification of front or rear views in vehicles forms an integral part when
we go ahead with deciding whether a given vehicle is moving in the correct lane. In the context of Indian streets, we have
various challenges like rural unmarked roads, faded markings, shaded situations from poles or trees, etc. Hence instead of
detecting lanes, an alternative way is to detect whether the vehicle(s) ahead is facing toward or away from our vehicle.
Various deep learning architectures have been proposed in this aspect to detect or classify objects like the networks from
Visual Geometry Group, You Only Look Once, Inception Networks, Residual Networks, etc. In this paper, we have
performed a comparative analysis of performance on various versions of You Only Look Once for its evolution over
time.

Keywords: Vehicle View Classification, Convolutional Neural Networks, Deep Learning, YOLO
__

1. Introduction

The various problems like faded lane markings, improper
rural roads, etc. make it quite challenging to address the
problem through the street’s view. The real-time
classification of vehicles’ views in the non-ideal context
of Indian lanes is an integral part of detecting whether a
vehicle is moving in the correct lane. Hence, we address
this problem of correct lane detection using the view of
other vehicles(s) ahead. Considering our own vehicle as a
reference, the dash-cam acquires the images of the
vehicle(s) ahead. Then is image is classified into whether
it is the rear view or the front view of the vehicle. If the
dashcam detects the front view, it means that our own
vehicle is in the wrong lane and vice versa. We have
comprehensively surveyed the performances of various
main versions of YOLO (You Only Look Once)
architecture from version 1 to version 8. Other versions of
YOLO like YOLOX [1], YOLOR [2], DAMO-YOLO
[3], PP-YOLO [4], etc. have not been considered in this
study. “Table 1” shows the evolution of YOLO
algorithms that we’ll be using ahead in this paper.
 Also, the COCO (Common Objects in Consideration)
dataset by Microsoft [5] is a widely used one when it comes
to training and testing the models. Other datasets include the
GTI’s vehicle image database [6], Caltech Database [7], and
Tu-Graz-02 Database [8]. We’ve used our own dataset
which will be discussed later in one of the subsequent
sections.
 Throughout our work, we discuss various aspects of each
version – architecture, features, strengths, and performance
based on mean average precision. Since, for Indian roads
and vehicles, it isn’t that easy to classify the front or rear of

vehicles (due to the conditions mentioned previously),
hence, classification based on number plate or structure
might need to be addressed to classify the vehicle’s front or
rear.
 In this section, we have introduced the concept of
classification of the view of vehicles and its significance.
Section 1.1 discussed the system model where we described
the dataset that has been manually collected and used for our
analysis. The literature survey of previously published works
has been carried out in Section 2. Section 3 describes the
proposed work, the accuracy metrics used, and its
implementation through each of the used versions of YOLO.

Table 1. Evolution of YOLO.
Year Version Features Notable

Improvements

2015 YOLO-V1 Real-time detection,
initial version

Speed and
simplicity

2016 YOLO-V2 Improved localization
with anchor boxes

Accuracy
enhancements

2018 YOLO-V3 Feature pyramid networks
(FPN)

Multi-scale
detection

2020 YOLO-V4,
YOLO-V5

CSPDarknet53, PANet,
lightweight YOLO-V5

State-of-the-art
performance

2022 YOLO-V6,
YOLO-V7

Unofficial iterations,
optimization

Speed and
efficiency

2023 YOLO-V8 Efficient Net backbone,
competitive performance

Balance of
speed/accuracy

2024 YOLO-V9 PGI, GELAN,
information bottleneck

Efficiency,
accuracy

 The results have been discussed in Section 4, followed
by which we concluded the work in Section 5. The front and
rear views of a training sample of a vehicle are shown in
“Fig 1” below.

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

Jestr

r

*E-mail address: prasantanou@mail.com
ISSN: 1791-2377 © 2024 School of Science, DUTH. All rights reserved.
doi:10.25103/jestr.174.21

Manas Kumar Rath and Prasanta Kumar Swain/Journal of Engineering Science and Technology Review 17 (4) (2024) 198 - 204

199

Fig. 1. Front and Rear views of a vehicle

System Model
The data for the system model is prepared by keeping the
Indian road and driving patterns in the form of images
which are taken from different video sources. This is
adopted with 28 Frames per second by own installed
camera in the vehicle. In the first approach, 30000 images
were collected to prepare the dataset. The basic
challenges found in general Indian road infrastructure is
its unstructuredness, featuring irregular merge points,
faded or absent lane markings. Additionally, there are no
strict restrictions on vehicle types where one can find all
type of vehicles moving, resulting in diverse traffic
scenarios. Indian roads exhibit irregular and unpredictable
turns and drivers frequently encounter challenges such as
illegal parking on the roadside, wrong-side driving and
even wrong-way movement. These characteristics make
Indian roads a complex and dynamic environment for
developing driving models.
 The dataset includes both the front and rear captures
of different vehicles. Considering the 80:20 ratio we split
the train and test set. “Fig 2”, “Fig 3”, and “Fig 4” are
some of the glimpses of the captured images.

Fig. 2. Rear view of cars

Fig. 3. Rear view of a bus

 It can easily be understood in “Fig 5” and “Fig 6” below
that the images are taken during nighttime. This also
included making the dataset robust and getting trained with
more accuracy and efficiency in different light conditions.
 In “Fig 6” it can be observed that there are so many
different types of vehicles on the move. The image is also
taken at nighttime with different intensity of light. The
model is trained well to determine the front and rear of the
different vehicles in such a complex traffic environment as
well. This outcome can suffice whether our vehicle is on the

correct lane or not by aggregating the overall data.

Fig. 4. Front view of Autorickshaws, Truck and Cars

Fig. 5. Rear View of autorickshaw and car during the night

Fig. 6. Rear View of cars during the night

2. Related Work

It has been observed that a lot of complexities are
encountered in Indian road traffic. Considering this issue,
certain approaches are being addressed. Lane detection in
complex Indian environments, addressing the poor road
conditions mentioned above, has been worked upon in [9].
Using the CNN architecture, NVIDIA also has proposed to
keep track of the steering movements in a real-time
environment for automated vehicles [10].

For an end-to-end automated vehicle, steering angles
have been predicted [11] using the architecture in [10]. A
comparison of performances has been performed in [12] for
Jacinto Net, VGG-19, and CNN in [10]. Authors in [13]
have improved the Jacinto-Net which shows the same
performance for Heterogeneous Multi-core platforms. In
[14], the authors have proposed two approaches to execute
the objective. The rear-view dimensions and edges are taken
into consideration in the first method. In the second
approach, considering orientation, position, eccentricity, and
other features of its backlights it has been observed that the
outcome is 89%.

In the mentioned work [15], the automatic recognition of
vehicle makes and model (MMR) using frontal views is
addressed, The two-stage vision-based consideration for
effective front and rear classification is addressed in[16]
using Eigen space and SVM. Authors in The MMR using

Manas Kumar Rath and Prasanta Kumar Swain/Journal of Engineering Science and Technology Review 17 (4) (2024) 198 - 204

200

local-tiled deep networks are addressed by the authors in
[17].

In [20], VOC and COCO datasets are taken into
consideration. Using all the main YOLO architectures, the
front-view and the rear-view classification of vehicles are
compared. Following the description of the dataset, the
accuracy metric and the version architectures are presented
along with performances individually.

The publicly available datasets contain images of roads
that are well-marked and maintained. But in the context of
Indian roads, the previously implemented works fail to work
properly due to the faded lane markings and even unmarked
lanes at various places. Hence, we took this approach of
analyzing the view of the other vehicles instead of the lanes.
The view classification is done after regular intervals of time
so that sometimes even if no vehicle is present ahead, it
would carry on with the previous flag signal until the
algorithm runs for the next time.

3. Proposed Work

We used Average Precision (AP) or Mean Average
Precision (MAP), a common metric for object detection
techniques. Followed by which a post-processing technique
called Non-Maximum Suppression (NMS) has been
leveraged which reduces the number of overlapping
bounding boxes to improve the detection and classification
quality. Both have been explained in detail in [23].

However, in [23] ImageNet dataset [21] and the
PASCAL VOC dataset have been employed to train YOLO
V1 and YOLO V2. The rest of the versions have been
trained using the COCO dataset.

3.1. YOLO V1
This consists of 24 convolutional layers with 2 fully
connected layers at the end. The architecture is explained in
detail originally in [20]. These convolutional layers are used
to extract features from the image followed by which the
fully connected layers predict probabilities and the
coordinates. It is important to note that the model was
originally trained using the PASCAL VOC dataset, which
consists of 20 classes (i.e., C = 20). For our dataset, since C
= 2, the output dimensions of the tensor turned out to be 7 ×
7 × 12. We’ve tweaked all the other models similarly to
meet our requirements. The figure for YOLO-V1 is given in
“Fig 7”.

Fig. 7. YOLO V1 architecture.

3.2. YOLO V2
This is an architecture based on Darknet-19 [24] which has
19 convolutional and 5 max-pooling layers. Several other
improvements were made to YOLO-V1 so that 9000
categories can be classified using it. The following

modifications were made:

▪ Batch normalization on all the convolutional layers.
▪ The model was fine-tuned for 10 epochs with a
resolution of 448×448 for high-resolution classification.
▪ The dense layers were removed, and fully convolutional
layers were used.
▪ Prior boxes were used for predicting the bounding boxes.
▪ k-means clustering was used by the authors to find good
priors.
▪ Trained using images of multiple sizes ranging from
320×320 to 608×608 in batches of 10.
▪ It predicts local coordinates, unlike offsets as predicted
by other methods.
▪ One pooling layer was removed to obtain a grid of
13×13 from an input size of 416×416. Also, a passthrough
layer has been used so that the features aren’t lost via spatial
subsampling. The architecture of YOLO-V2 [25] has been
shown in “Fig 8”.

Fig. 8. YOLO V2 architecture.

3.3. YOLO V3
This architecture in “Fig 9” is based on Dark-net-53 [26]
which has 53 convolutional layers and the max-pooling
layers in YOLO-V2 have been replaced by stride
convolutions. In addition to that some residual connections
have also been made. Several other improvements were
made to YOLO-V2. The following modifications were
made:

▪ Batch normalization and Leaky Rectified Linear Unit
activation function on all the convolutional layers.
▪ Across the whole network, the residual connections
connect the input of 1 × 1 with the output of 3 × 3
convolutions in size.
▪ The predictions are made for multiple grid sizes, hence
enabling us to acquire finer detailed boxes, hereby
improving the predictions for smaller objects.

Fig. 9. YOLO V3 architecture.

Manas Kumar Rath and Prasanta Kumar Swain/Journal of Engineering Science and Technology Review 17 (4) (2024) 198 - 204

201

3.4. YOLO V4
After 2 years, in 2020 the next version of YOLO-V4 was
released [28]. This is based on the architecture of modern
object detectors which collectively consist of a backbone
(CSP DarkNet 53), a neck (SPP + PANet), and a head
(YOLO-V3). The input goes to the backbone which is
essentially the feature extractor.
 The neck is essentially used for multi-resolution feature
aggregation. The head generates final predictions as outputs.
A schematic architecture [29] is shown in “Fig 10”.The key
changes [23] in this version include – Bag of Specials (BoS)
integration, Bag of Freebies (BoF) integration, Self-
Adversarial training, and Genetic algorithms for fine-tuning
parameters.
 The architecture for YOLO-V4 is shown in “Fig 11”. It
consists of the following key modules:

• CBM: Convolution, Batch Normalization, Mish
Activation.
• CBL: Convolution, Batch Normalization, Leaky ReLU
Activation
• UP: Up-sampling
• SPP: Spatial Pyramid Pooling
• PANet: Path Aggregation Network.

Fig. 10. Modern Object Detection.

Fig. 11. YOLO-V4 architecture.

3.5. YOLO V5
This has been developed using PyTorch (Bottle Neck CSP)
instead of DarkNet. It provides 5 scaled versions namely –
nano, small, medium, large, and extra-large versions. As
such, there has been no official paper released for YOLO-V5
as such, but Ultralytics actively maintains this open-source
model. Authors in [30] have used YOLO-V5 for their image

localization and classification tasks. The official architecture
as published by Ultralytics is shown in “Fig 12”.

Fig. 12. YOLO V5 architecture.

3.6. YOLO V6
Published in [31] by the Meituan Vision AI Department, this
model uses a backbone based on RepVGG (EfficientRep)
where there is high parallelism. The neck utilizes PANet
integrated with RepBlocks or CSPStackNet. The head is
decoupled, inspired by YOLOX. The architecture is shown
in “Fig 13”.

Fig. 13. YOLO V6 architecture.

 The new features in this architecture include:

• Label assignment using Task Alignment One-step
Object Detection [32].

• VariFocal loss metric [33] for classification and
SIoU/GIoU metric loss [34] for regression.

• Self-distillation for both above-mentioned tasks.
• Quantization scheme using re-parameterized

optimizers [35] and channel-wise distillation [36] for
low latency detection.

3.7. YOLO V7
This version of YOLO [37] was published by the same
authors as YOLO-V4. It simply out powered all known
object detectors with respect to accuracy and speed in the
range of 5 FPS to 160 FPS. The training time increased, but
the accuracy improved without affecting the speed much.
The major changes in this architecture include:

• Extended Efficient Layer Aggregation Network (E-
ELAN) is a way through which models train and fit
easily by controlling the shortest longest gradient path.
• Model scaling since YOLO-V7 is an architecture
(“Fig 14”) based on concatenation. By using
techniques such as width or depth scaling, the ratio
between input and output channels is changed leading
to less hardware usage by the model as shown in “Fig
15”.
• The identity connection in RepConv used in
YOLO-V6, seemed to affect the concatenation in
DenseNet [38] and residual in ResNet [39]. Hence it
was removed and renamed to RepConvN.
• Coarse labels for auxiliary (training) and fine

Manas Kumar Rath and Prasanta Kumar Swain/Journal of Engineering Science and Technology Review 17 (4) (2024) 198 - 204

202

labels for the lead head (output).

Fig. 14. YOLO V7 architecture.

Fig. 15. Scaling in YOLO-V6 architecture.

Fig. 16. YOLO V8 architecture.

3.8. YOLO V8
This version was again released by Ultralytics [40] in 2023.

In addition to continuing its trend from YOLO-V5, it used
mosaic augmentation for training, except in the last 10
epochs so that it doesn’t get detrimental.
 It also provides 5 scaled versions namely – nano, small,
medium, large & extra-large versions. It can be run using a
command line interface or also a pip module. The official
architecture released by Ultralytics is shown in “Fig 16” for
YOLO-V8.

4. Results and Discussion

As discussed in Section 3 above, Average Precision is the
metric that has been used to compare these models, trained
on our gathered dataset. “Table 2” summarizes the various
aspects of the architectures and the accuracies of the model
outputs.

Table 2. Evolution of YOLO
Year Version Framework Anchor

Box Backbone AP

2015 1 Darknet × Darknet 24 0.711
2016 2 Darknet ü Darknet 19 0.713
2018 3 Darknet ü Darknet 53 0.462
2020 4 Darknet ü CSPDarknet53 0.420

2020 5 Pytorch ü Modified CSP
V7 0.558

2022 6 Pytorch × Efficient Rep 0.515
2022 7 Pytorch × RepConvN 0.502
2023 8 Pytorch × YOLO V8 0.455

 From the table above, we can see that the mean average
precision of YOLO-V4 is 0.42, hence proving to be the best
fit for our data and task in hand, followed by YOLO-V8 &
YOLO-V3 with AP values of 0.45 & 0.46 respectively. The
largest precision values were given by YOLO-V1 & YOLO-
V2 with approximate values of 0.71 each.
 The results corresponding to YOLO-V4 implementation
are shown in figures 17 to 23, indicating the front and rear
views of vehicles in the frame. “Fig 17” below shows the
rear view of a bus moving in the same lane as that of our
vehicle. “Fig 18” shows the front view of the vehicles being
detected on a busy street. “Fig 19” shows the rear views of
vehicles being detected during the night. “Fig 20” also
shows the rear views detected during the daytime. “Fig 21”
shows the rear view of a car detected during the night. “Fig
22” shows the front view of cars detected during the night.
“Fig 23” shows both the rear and frontal views of cars
detected from a distance.

Fig. 17. Rear view detection of a bus moving in a distance

As the challenges discussed in subsection 1.1, with reference
to Indian road context we observed that

• The implemented YOLO-V4 model works well even
during the night to detect the front and rear views of

Manas Kumar Rath and Prasanta Kumar Swain/Journal of Engineering Science and Technology Review 17 (4) (2024) 198 - 204

203

vehicles.
• The model also works well to detect the views of

distant vehicles.
• The model is successfully able to detect the front and

rear views of cars, buses, autorickshaws, and trucks.

Fig. 18. Front views of vehicles detected on a busy road

Fig. 19. Rear view of vehicles detected during the night

Fig. 20. Rear view of vehicles detected on a road

Fig. 21. Rear view of a car detected during the night

Fig. 22. Front view of cars detected during the night

Fig. 23. Rear & front views of distant vehicles detected on the road

 If implemented along with an ADAS, the control can
automatically detect whether our vehicle is in the correct
lane or not based on the views of other vehicles on the street.
This can be seen in “Fig. 18” and “Fig. 22” that our vehicle
is on the wrong side of the lane. This scheme can be
extended and implemented even in Indian lanes where the
lane markings are faded, absent, or even sometimes
unmarked. This creates a significant milestone in our work,
where in the context of Indian lanes we can work ahead after
detection of the view of the vehicles in consideration.

5. Conclusion and Future Scope

The 8 main versions of YOLO were studied, trained & tested
with our collected dataset aiming to minimize the mean
Average Precision metric. After running the codes and
validating the results, we found that YOLO-V4 gave us the
best AP value. Version 9 is just released and these datasets
or more can be further used on it, especially for
classification use cases.
 Other versions of YOLO such as YOLOR, YOLOX,
DAMO-YOLO, etc. can also be trained & tested with our
dataset to see if any improvements can be made. In addition
to that, YOLO models which are yet to be proposed also find
a scope to be studied and trained with the same dataset to
look for improvements in the future.

This is an Open Access article distributed under the terms of
the Creative Commons Attribution License.

References

[1] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding

YOLO Series in 2021,” 2021, arXiv. doi:
10.48550/ARXIV.2107.08430.

[2] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “You Only Learn One
Representation: Unified Network for Multiple Tasks,” 2021,
arXiv. doi: 10.48550/ARXIV.2105.04206.

Manas Kumar Rath and Prasanta Kumar Swain/Journal of Engineering Science and Technology Review 17 (4) (2024) 198 - 204

204

[3] X. Xu, Y. Jiang, W. Chen, Y. Huang, Y. Zhang, and X. Sun,
“DAMO-YOLO : A Report on Real-Time Object Detection
Design,” 2022, arXiv. doi: 10.48550/ARXIV.2211.15444.

[4] X. Long et al., “PP-YOLO: An Effective and Efficient
Implementation of Object Detector,” 2020, arXiv. doi:
10.48550/ARXIV.2007.12099.

[5] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,”
2014, arXiv. doi: 10.48550/ARXIV.1405.0312.

[6] J. Arróspide, L. Salgado, and M. Nieto, “Video analysis-based
vehicle detection and tracking using an MCMC sampling
framework,” EURASIP J. Adv. Signal Process., vol. 2012, no. 1,
p. 2, Dec. 2012, doi: 10.1186/1687-6180-2012-2.

[7] J. Dietrich, “The Caltech–Chile Connection,” Eng. Sci., vol. 64,
no. 7, pp. 8–17, Apr. 2004.

[8] Y. Li, Y. Guo, J. Guo, Z. Ma, X. Kong, and Q. Liu, “Joint CRF
and Locality-Consistent Dictionary Learning for Semantic
Segmentation,” IEEE Trans. Multimedia, vol. 21, no. 4, pp. 875–
886, Apr. 2019, doi: 10.1109/TMM.2018.2867720.

[9] M. K. Rath, P. K. Swain, and S. Banerjee, “An Optimised Deep
Learning Approach of Lane Detection in Complex Indian
Environment,” in 2022 1st IEEE Int. Conf. Industr. Electron.:
Developm. & Applicat. (ICIDeA), Bhubaneswar, India: IEEE, Oct.
2022, pp. 1–5. doi: 10.1109/ICIDeA53933.2022.9970079.

[10] M. Bojarski et al., “End to End Learning for Self-Driving Cars,”
2016, arXiv. doi: 10.48550/ARXIV.1604.07316.

[11] M. K. Rath, T. Swain, T. Samanta, S. Banerjee, and P. K. Swain,
“Steering Wheel Angle Prediction from Dashboard Data Using
CNN Architecture,” in Emerg. Technol. Data Mining Informat.
Sec., vol. 1348, P. Dutta, A. Bhattacharya, S. Dutta, and W.-C.
Lai, Eds., in Advances in Intelligent Systems and Computing, vol.
1348., Singapore: Springer Nature Singapore, 2023, pp. 393–401.
doi: 10.1007/978-981-19-4676-9_33.

[12] M. K. Rath and P. Kumar Swain, “Front and Rear Classification
of Vehicles in Indian Context using Deep Neural Networks,” in
2023 Int. Conf. Commun., Circ., Sys. (IC3S), Bhubaneswar, India:
IEEE, May 2023, pp. 1–4. doi:
10.1109/IC3S57698.2023.10169515.

[13] S. Chen, H. Yuan, X. Cao, and X. Li, “A Real-time Image
Recognition System Based on Improved Jacintonet Convolutional
Neural Network,” J. Phys.: Conf. Ser., vol. 1576, no. 1, Art. no.
012004, Jun. 2020, doi: 10.1088/1742-6596/1576/1/012004.

[14] D. Santos and P. L. Correia, “Car recognition based on back lights
and rear view features,” in 2009 10th Worksh. Image Analys.
Multimedia Interact. Servic., London, United Kingdom: IEEE,
May 2009, pp. 137–140. doi: 10.1109/WIAMIS.2009.5031451.

[15] V. S. Petrovic and T. F. Cootes, “Vehicle type recognition with
match refinement,” in Proceedings of the 17th Inter. Conf. Pattern
Recogn., 2004. ICPR 2004., Cambridge, UK: IEEE, 2004, pp. 95-
98 Vol.3. doi: 10.1109/ICPR.2004.1334477.

[16] Q. B. Truong and B. R. Lee, “Vehicle Detection Algorithm Using
Hypothesis Generation and Verification,” in Emerg. Intell.
Comput. Techn. Applic., vol. 5754, D.-S. Huang, K.-H. Jo, H.-H.
Lee, H.-J. Kang, and V. Bevilacqua, Eds., in Lecture Notes in
Computer Science, vol. 5754., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 534–543. doi: 10.1007/978-3-642-04070-
2_59.

[17] Y. Gao and H. Lee, “Local Tiled Deep Networks for Recognition
of Vehicle Make and Model,” Sensors, vol. 16, no. 2, p. 226, Feb.
2016, doi: 10.3390/s16020226.

[18] M. Mathew, K. Desappan, P. K. Swami, and S. Nagori, “Sparse,
Quantized, Full Frame CNN for Low Power Embedded Devices,”
in 2017 IEEE Conf. Comput. Vision Patt. Recogn. Worksh.
(CVPRW), Honolulu, HI, USA: IEEE, Jul. 2017, pp. 328–336.
doi: 10.1109/CVPRW.2017.46.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” Commun.
ACM, vol. 60, no. 6, pp. 84–90, May 2017, doi: 10.1145/3065386.

[20] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only
Look Once: Unified, Real-Time Object Detection,” in 2016 IEEE
Conf. Comp. Vis. Patt. Recogn. (CVPR), Las Vegas, NV, USA:
IEEE, Jun. 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in 2009
IEEE Conf. Comp. Vis. Patt. Recogn., Miami, FL: IEEE, Jun.
2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[22] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A.
Zisserman, “The Pascal Visual Object Classes (VOC) Challenge,”
Int J Comput Vis, vol. 88, no. 2, pp. 303–338, Jun. 2010, doi:
10.1007/s11263-009-0275-4.

[23] J. Terven and D. Cordova-Esparza, “A Comprehensive Review of
YOLO Architectures in Computer Vision: From YOLOv1 to
YOLOv8 and YOLO-NAS,” 2023, doi:
10.48550/ARXIV.2304.00501.

[24] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster,
Stronger,” in 2017 IEEE Conf. Comp. Vis. Patt. Recogn. (CVPR),
Honolulu, HI: IEEE, Jul. 2017, pp. 6517–6525. doi:
10.1109/CVPR.2017.690.

[25] S. Seong, J. Song, D. Yoon, J. Kim, and J. Choi, “Determination
of Vehicle Trajectory through Optimization of Vehicle Bounding
Boxes using a Convolutional Neural Network,” Sensors, vol. 19,
no. 19, Art. no. 4263, Sep. 2019, doi: 10.3390/s19194263.

[26] J. Redmon and A. Farhadi, “YOLOv3: An Incremental
Improvement,” 2018, arXiv. doi: 10.48550/ARXIV.1804.02767.

[27] A. Ammar, A. Koubaa, M. Ahmed, A. Saad, and B. Benjdira,
“Vehicle Detection from Aerial Images Using Deep Learning: A
Comparative Study,” Electronics, vol. 10, no. 7, Art. no. 820,
Mar. 2021, doi: 10.3390/electronics10070820.

[28] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4:
Optimal Speed and Accuracy of Object Detection,” 2020, arXiv.
doi: 10.48550/ARXIV.2004.10934.

[29] S.-S. Park, V.-T. Tran, and D.-E. Lee, “Application of Various
YOLO Models for Computer Vision-Based Real-Time Pothole
Detection,” Appl. Sci., vol. 11, no. 23, Art. no. 11229, Nov. 2021,
doi: 10.3390/app112311229.

[30] M. Horvat, L. Jelečević, and G. Gledec, "A comparative study of
YOLOv5 models performance for image localization and
classification." In 33rd Central European Conf. Infor. Intellig. Sys.
(CECIIS), Dubrovnik, Hrvatska, Sep. 2022.

[31] C. Li et al., “YOLOv6: A Single-Stage Object Detection
Framework for Industrial Applications,” 2022, arXiv. doi:
10.48550/ARXIV.2209.02976.

[32] C. Feng, Y. Zhong, Y. Gao, M. R. Scott, and W. Huang, “TOOD:
Task-aligned One-stage Object Detection,” in 2021 IEEE/CVF
Internat. Conf. Comp. Vis. (ICCV), Montreal, QC, Canada: IEEE,
Oct. 2021, pp. 3490–3499. doi: 10.1109/ICCV48922.2021.00349.

[33] H. Zhang, Y. Wang, F. Dayoub, and N. Sünderhauf,
“VarifocalNet: An IoU-aware Dense Object Detector,” 2020,
arXiv. doi: 10.48550/ARXIV.2008.13367.

[34] Z. Gevorgyan, “SIoU Loss: More Powerful Learning for
Bounding Box Regression,” 2022, arXiv. doi:
10.48550/ARXIV.2205.12740.

[35] X. Ding, H. Chen, X. Zhang, K. Huang, J. Han, and G. Ding, “Re-
parameterizing Your Optimizers rather than Architectures,” 2022,
arXiv. doi: 10.48550/ARXIV.2205.15242.

[36] C. Shu, Y. Liu, J. Gao, Z. Yan, and C. Shen, “Channel-wise
Knowledge Distillation for Dense Prediction,” 2020, arXiv. doi:
10.48550/ARXIV.2011.13256.

[37] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7:
Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-
Time Object Detectors,” in 2023 IEEE/CVF Conf. Comp. Vis.
Patt. Recogn. (CVPR), Vancouver, BC, Canada: IEEE, Jun. 2023,
pp. 7464–7475. doi: 10.1109/CVPR52729.2023.00721.

[38] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely Connected Convolutional Networks,” in 2017 IEEE
Conf. Comp. Vis. Patt. Recogn. (CVPR), Honolulu, HI: IEEE, Jul.
2017, pp. 2261–2269. doi: 10.1109/CVPR.2017.243.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in 2016 IEEE Conf. Comp. Vis. Patt.
Recogn. (CVPR), Las Vegas, NV, USA: IEEE, Jun. 2016, pp.
770–778. doi: 10.1109/CVPR.2016.90.

[40] “Ultralytics YOLOv8,” Ultralytics. [Online]. Available:
https://docs.ultralytics.com

