
Journal of Engineering Science and Technology Review 17 (5) (2024) 104-109

Research Article

A Modified 2:1 Multiplexer-Based Low Power Ternary ALU for IoT Applications

S. Allwin Devaraj1,*, D. Magdalin Mary2, P. Kannan1, S. Esakki Rajavel3, Cynthia Anbuselvi
Thangaraj4, K. B. Gurumoorthy5 and Blanie Scrimshaw William6

1Department of Electronics and Communication Engineering, Francis Xavier Engineering College, Tirunelveli-627003, Tamilnadu,
India.

2Department of Electrical and Electronics Engineering, Sri Krishna College of Technology, Coimbatore-641042, Tamilnadu, India.
3Department of Electronics and Communication Engineering, Karpagam Academy of Higher Education, Coimbatore- 641021,

Tamilnadu, India.
4Department of Electronics and Communication Engineering, SEA College of Engineering and Technology, Bengaluru-560049,

Karnataka, India.
5Department of Electronics and Communication Engineering, KPR Institute of Engineering and Technology, Coimbatore-641407,

Tamilnadu, India.
6Department of Computer Science and Engineering, Rohini College of Engineering and Technology, Kanyakumari-629401, Tamilnadu,

India.

Received 27 March 2024; Accepted 13 October 2024

Abstract

The ternary logic has a benefit over the binary logic which provides a secured solution to achieve a trade-off between the
area and power of the design. However, from the structure of the ternary Aritmetic Logic Unit (ALU), it is clear that its
architecture increases the area, propagation delay, and power consumption. To overcome this drawback, a loopback
algorithm is proposed to achieve low power and high throughput Internet of Things (IoT) processors. The loopback
algorithm reduces the number of processing stages in multipliers and adders which can significantly reduce area and
power dissipation. The proposed 2:1 multiplexer-based approach reduces the need for a decoder and results in low power
consumption. The proposed design will be implemented in Xilinx ISE 13.0 and simulation will be done in Modelsim. The
modified Ternary ALU (TALU) performs finer than the previous TALU method. The number of registers used in this
architecture is reduced by up to 25% than the existing system therefore there is a reduction in power dissipation.

Keywords: TALU, OR, EXOR, Multiplexer, Delay, Power Consumption.
__

1. Introduction

Digital signal processor plays a significant role in electronic
devices, biomedical applications, communication protocols,
LTE devices, etc [1-3]. Efficient IC design is a key factor to
achieve low power and high throughput IP core development
for portable and LPD [4]. Internet of Things plays a
significant role in real-time computing and processing [5-7].
Now that every object can be connected to the internet.
These devices range from ordinary household objects to
industrial tools but area overhead and power consumption
are major drawbacks to achieving efficient design
constraints. In modern society, the most important
component used in the electronic system is Integrated
Circuits (IC) [8-10]. The binary logic is widely used due to
its accuracy and user friendly but in recent years its
performance become slow and there is a reduction in
scalability to overcome this multi-valued logic (MVL) is
being researched due to the reduction in area and power
[11]. The digital operation is performed better in ternary
logic rather than the binary logic. The value (0,1,2) are the
three logic levels of ternary logic that refer to the voltage of
0, Vdd/2, and Vdd. Due to the usage of 3 valued logic tons
of data can be effortlessly shifted with a less amount of
devices. The complexity of the ternary logic is the main
reason for the lesser usage of the design to make it use
widely lots of analysis is being done [12-14].

 In an earlier paper, based on the pipelined technique the
TALU designs are built. It makes the design more complex
because of the usage of area and the processing stages. To
overcome the drawbacks in the previous works the proposed
design uses the loopback algorithm so that there will be a
reduction in area and consumption of power and also
reduces the interconnection and the computational costs [15-
16]. The loopback technique stores the data in the memory
and gives it as output when it is needed so there is a
reduction in the processing stages than the previous method.
It uses a 2:1 multiplexer-based technique so there will be a
reduction in the decoder and to make the arithmetic circuit
implement effectively [17-18].
 The paper is arranged as given below. The existing
Pipelined TALU Design is explained in section 2. Section 3
presents the Modified TALU design and implementation and
functions in detail. In section, 4 results are discussed and the
conclusion is discussed in Section 5.

2. Existing Pipelined TALU Design

In the existing method, the TALU design is built based on
the pipelined technique with a 2:1 multiplexer-based
approach. Figure (1) shows the block diagram of the existing
pipelined method. The component in the pipelined TALU
design is the function processing module which consists of 9
operations. And function selection lines S1 and S0 are used
to select the operation which has to be given as an output

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

Jestr

r

*E-mail address: babu.allwin@gmail.com
ISSN: 1791-2377 © 2024 School of Science, DUTH. All rights reserved.
doi:10.25103/jestr.175.14

S. Allwin Devaraj, D. Magdalin Mary, P. Kannan, S. Esakki Rajavel, Cynthia Anbuselvi Thangaraj, K. B. Gurumoorthy and Blanie Scrimshaw
William/Journal of Engineering Science and Technology Review 17 (5) (2024) 104 - 109

 105

and then the main unit is the pipelined stage which is used to
reduce the delay at last the component is a multiplexer
module. In this architecture, the 9:1 multiplexer uses 9
inputs for different operations. It receives 9 inputs and sends
one output. Here 2-digit multiplexer is used to design the
architecture of the TALU. A and B are considered as input
with 2-digit values and 2-digit Y act as an output. The usage
of the pipelined technique reduces delay but it uses a large
number of processing stages and lots of registers for
processing so that it consumes lots of areas and it consumes
tons of power due to that the computational cost will be
high. It consists of lots of interconnections.

Fig. 1. Block diagram of existing pipelined ALU

3. Modified TALU Design (2-digit)

3.1 Modified 2-digit TALU Design and implementation
A modified 2-digit TALU is established in this section. Each
module is designed using the 2-digit multiplexer. The inputs
are 2-digit A and B and also have 2-digit output Y. Figure
(2) is the block diagram of the modified TALU. The
selection lines are S1 and S0 which select the operation
within the 9 different operations. The processing module
processes the operation such as logic and arithmetic and gets
the output. As shown in Figure (2) the three main blocks in
the modified TALU are a functional processing module, a
functional selection module, and a 9:1 multiplexer. The
drawbacks of the previous method can be overcome by the
loopback algorithm. The loopback algorithm is used to
reduce the number of processing stages in the architecture so
there will be a reduction in the number of chips. It reduces
the area of the TALU design and the power consumption of
the design will be low. It stores the outputs in the memory
and loopback the output when the input needs the correct
output.
 Here the module designs are designed by the 2:1
multiplexer therefore the processor in this proposed will be

effective and also it reduces the area of the architecture. The
functional processing module consists of the arithmetic and
logical operations and processes them to get the output
related to the given inputs. The output Y will be selected by
the selection block. The truth table of the TALU is shown in
Table 1 where all the operations are described and used to
verify which operation has been done. It consists of less
number of interconnections so there is a lesser number of
area. The processing module is directly connected to the 9:1
multiplexer to get the final output.

Fig. 2. Block diagram of modified TALU

Table 1. TALU Truth Table

S 0 S 1 O p e r a t i o n s
2 2 N A N D
1 2 A N D
0 2 N O R
2 1 O R
1 1 E X O R
0 1 C o m p a r i s o n
2 0 M u l t i p l i c a t i o n
1 0 S u b t r a c t i o n
0 0 A d d i t i o n

 The block diagram of the function selection line (FSL) is
shown in Figure (3). The block diagram of the FSL is the
same as the previous paper which is referred to in [2]. Here
the decoder is used only in the selection line The inputs of
the selection lines S1 and S2 have 3 input values 0,1,2 for
each. It has nine different operations consisting of logic and
arithmetic units. Based on the selection line the operations
which has be done will be selected. Based on Table 1 the
operation which has to be performed can be verified. The
multiplexer module is connected to the processing modules.
The processing module has 9 different operations. It receives
input A, B, and Cin. Based on the given input each operation
gives its outputs. The outputs are connected to the
multiplexer where the selection line is inserted. Based on the
selection lines given in the multiplexer the specific operation
in which output is needed is given as an output Y. Here
loopback algorithm is being used so the performance of the
applications will be effective.

S. Allwin Devaraj, D. Magdalin Mary, P. Kannan, S. Esakki Rajavel, Cynthia Anbuselvi Thangaraj, K. B. Gurumoorthy and Blanie Scrimshaw
William/Journal of Engineering Science and Technology Review 17 (5) (2024) 104 - 109

 106

Fig. 3. Block diagram of FSL

 The previous pipelined design uses the pipelining stages
so there will be a lot of processing stages. These stages
occupy a large amount of area and there will be an increase
in power consumption to reduce the area loopback algorithm
is used. Here 2:1 multiplexer is used to design each module
so the applications will be done effectively and with less
complexity. The unary operators are the basis for the
multiplexer-based approach. Table 2 shows the values of the
unary operators. The operators in Table 2 are the main
operators in the modified TALU design.

Table 2. Unary Operators

A 0 1 2
A0 2 0 0
A2 0 0 2

1.A2 0 0 1
A+2 2 0 1
A+1 1 2 0
A0 0 2 2
A2 2 2 0

1.A0 0 1 1

1) Adder and subtractor Module: Based on the 2:1
multiplexer approach the adder and subtractor module is
designed using the loopback algorithm. Figure 4 shows the
block diagram of the adder subtractor module. Here 2 digits
A and B are given as input for both the HAS and FAS. The
output will be a 2-digit sum, carry and difference, borrow
B0, B1. Then the output in the HAS will be given to FAS as
an input. M in this module acts as a controller because it
chooses whether the module should execute an adder or
subtractor. If the adder module is to be performed then the
M value should be 0, if it has to perform subtraction the M
value should be 2. For addition operation the controller
M=0.
 At first, the HAS output of the addition operation is

SUM:	S = B!. A + B". A#" + B$. A#$ (1)

CARRY:	C = B! + B". (1. A$) + B$(1. A!) (2)

Fig. 4. Block diagram- Adder-subtractor module

 From the above equation (1), (2) B which also includes
B0, B1, and B2 are the selection lines and A+1, A+2, (1.A2),
(1.A0) are the unary operators its value are expressed in
Table 2. The addition operation equations are further
transformed to get the accurate 2-digit multiplexer-based
design. The transformed equations are (3), and (4) These
Sum and Carry from equations (3), and (4).

S = B!. A + B!%%⃗ (B$%%⃗ . A#" + B$. A#$) (3)

C = B!. 0 + B!%%⃗ (B$%%⃗ . (1. A$) + B$(1. A!%%⃗)) (4)

 Same as the adder operation the subtraction operation
will also be done. For subtraction, the value of the controller
M will be 2. The HAS output for subtraction is

D = B!. A + B". A#$ + B$. (5)

B = B!. 0 + B". (1. A!) + B$(1. A$%%⃗) (6)

 From the above equation (5), (6) B which also includes
B0, B1, and B2 are the selection lines and A+1, A, (1.A2),
(1.A0) are the unary operators its value are expressed in
Table 2. The above equation (5), and (6) is transformed into
(7), and (8) equation to get an accurate design. The output
will be of difference and borrow.

D = B!. A + B!%%⃗ (B$%%⃗ . A#$ + B$. A#") (7)

B = B!. 0 + B!%%⃗ (B$%%⃗ . (1. A!) + B$(1. A$%%⃗)) (8)

 The execution of FAS is similar to the pattern of HAS.
The output of the HAS goes to the FAS. Here selection line
is B and the values related to B and A+1, A+2, (1.A2), and
(1.A0) are the unary operators. Table 3 presents the truth
table of the FAS. Table 3 shows the values for adder
operation and the values for subtraction. Based on the truth
table the output of addition and subtraction operations can be
verified.

Table 3. FAS Truth Table

 Sum Carry
A/B 0 1 2 0 1 2

0 1 2 0 0 0 1
1 2 0 1 0 1 1
2 0 1 2 1 1 1

 Difference Borrow
A/B 0 1 2 0 1 2

0 0 2 1 0 1 1
1 1 0 2 0 0 1
2 2 1 0 0 0 0

S. Allwin Devaraj, D. Magdalin Mary, P. Kannan, S. Esakki Rajavel, Cynthia Anbuselvi Thangaraj, K. B. Gurumoorthy and Blanie Scrimshaw
William/Journal of Engineering Science and Technology Review 17 (5) (2024) 104 - 109

 107

 When the controller M value is 0 then the addition
operation of FAS will be done. Equations (9), and (10) show
the sum and carry of FAS:

S = C'(! . f1 + C)(! .444444⃗ f2 (9)

C = C'(! . f3 + C)(! .444444⃗ f4 (10)

 When the controller M value is 2 then the subtraction
operation of FAS is done. Equations (11), and (12) show the
difference and borrow of FAS:

D = B'(! . f1 + B)(! .444444⃗ f2 (11)

B = B'(! . f3 + B)(! .444444⃗ f4 (12)

(a) Design -Sum or difference

(b) Design - carry or borrow
Fig. 5. 2 digit - adder subtractor design

 The above figure 5 shows the design of the adder and
subtractor module. The design of the module is referred
from the reference paper [1]. The module is designed with
the 2-digit multiplexer which makes the design less complex
and makes the modules work effectively.

2) Multiplier Module: In this module multiplication
operation will be done. The design of the module is referred
from the reference paper [1]. Here the value A and B act as
input. The module is designed with the 2-digit multiplexer.
The equations (13), and (14) show the output of the product
and carry.

Fig. 6. (2-digit) Multiplier design

P = B!. 0 + B"(A) + B$. (A#$%%%%%⃗) (13)

C = B!. 0 + B$. (1. A$) (14)

 Here the value (1.A2), and A+2 are the unary operators of
this module. Figure (6) shows the design of the multiplier
module which is done based on the equation (15), and (16).
The 2-digit multiplier design is done using the loopback
algorithm. By using this the module can work effectively.

P = B!. 0 + B!%%⃗ (B$%%⃗ . A) + B$. (A#$%%%%%⃗) (15)

C = B!. 0 + B$. (1. A$) (16)

3) Comparator Module: This module shows the design of
the comparator which is designed using the 2-digit
multiplexer. It usually compares the two input values A and
B whether it is greater or lesser or equal. The value of g and
l are shown in the equation (19) and (20) using a 2:1
multiplexer. Based on these two equations Figure (7) is
designed referred by paper [1]. Equation (17) and (18) are
the equation that shows whether the input is greater or lesser.

A > B = g1+g0 .l1 (17)

A < B = l0+g1 .l0 (18)

 The value of g1,g0, l1, and l0 are given in the below
equation (19) and (20) where g1, and g0 is referred to as g,
and l1 and l0 are referred to as l.

g = B!. A! + B!%%⃗ (B$%%⃗ . B$ + B$.0) (19)

l = B$. A$%%⃗ + B$%%⃗ (B$%%⃗ . A!%%⃗) + B!.0) (20)

 The selection line of the comparator module is B. The
values A0, A2, A0, and A2 are the unary operators. The 2-
digit multiplier in this design is done using the loopback
algorithm. By using this the module can work effectively.

(a) Greater generation- Design

(b) Lesser generation- Design

Fig. 7. 2-digit- Comparator design

4) Multiplexer Module: Here in this module design of the
multiplexer is described. Figure (8) is the design of the
multiplexer. It mainly uses a 9:1 multiplexer because 9
different operations are done. It also shows the working of
the selection line which is used to select the operations. The

S. Allwin Devaraj, D. Magdalin Mary, P. Kannan, S. Esakki Rajavel, Cynthia Anbuselvi Thangaraj, K. B. Gurumoorthy and Blanie Scrimshaw
William/Journal of Engineering Science and Technology Review 17 (5) (2024) 104 - 109

 108

multiplexer module is designed by a 3:1 multiplexer. It is of
two stages. In the first stage S0 act as a selection line which
gives their output to the next stage where S1 acts as a
selection line according to the operation which has to be
done. By the given inputs in the S0 and S1, the output Y will
be given according to the chosen operation

Fig. 8. Multiplexer- Design

4. Result and Discussion

4.1 Software Used
In the proposed modified TALU design the software used is
Xilinx ISE 13.2 because it is easy to handle and gives the
result accurately. This algorithm makes the design run fast
more than 30% which makes the project cost-effective and
can be done in less time. Here the coding used for the
project is Verilog. Verilog code is user-friendly and can be
used by many because it is understandable. The simulation
result in this TALU consumes less amount of voltage and
also it consumes lesser power. The power dissipation will
also be lesser compared to the other.

4.2 Comparison and Simulation of modified TALU
The simulation waveform of the arithmetic and logical
operation is presented in this section and the comparison of
the modified and the existing pipelined TALU is given. The
comparison table in Table 4 shows the difference in the area,
delay, and power consumption of both TALU designs. The
final simulation waveform of the modified TALU design is
shown in Figure (11). The output of the TALU can be
verified in Table 1.
 The waveform of the subtractor which is one of the
arithmetic operations is shown in Figure (9) and one of the
logical operations NAND is shown in Figure (10) is given
for reference. Based on the truth table of their ternary
operation the output can be determined. The input is of
ternary value (0,1,2) and the output will also be in ternary
value and the interconnections between the two modules are
considered as wire X. There are lesser interconnections
compared to the previous work. There is also an
improvement in the area and power consumption. The
computational costs will also be reduced because there is a
reduction in the consumption of the area. Due to low power
consumption, it can perform effectively in IoT applications.
In figure (9) the subtraction operation is shown based on the
ternary input value the output will be obtained. This can be
verified by Table 2 likewise the operation NAND is shown
in Figure (10) is done. The modified TALU design
simulated waveform is shown in Figure (11). The value a, b,
S1, S0, Cin, and clk are the inputs of the TALU simulation
the value Y acts as an output, The wire value X {X1, X2,

X3,… X9} are the interconnections between the processing
module and the 9:1 multiplexer. The S1 and S0 are the
selection lines based on the values in the selection line the
operation which has to be performed will process and get an
output Y. Here loop-back algorithm is used so there is a lot
of reduction in the processing module and makes the process
done effectively. The loopback algorithm is used to reduce
the number of chips, and the area is reduced in the modified
TALU.

Fig. 9. Arithmetic operation (Subtractor)- Simulation waveform

Fig. 10. Logical operation (NAND)- Simulation waveform

Table 4. Comparisons Table
Parameters Number of

slice registers
used

Delay(ns) Power(W)

Existing
Pielined TALU

52 0.678 1.110

Modified
TALU

21 1.046 1.109

Fig. 11. Modified TALU design- Simulation waveform

5. Conclusion

The modified TALU is proposed by the loopback algorithm
to make the design suitable for the applications to work fast
and to make it cost-effective. The main components in the
modified TALU are the function selection module, function
processing modules, and 9:1 multiplexer. Due to this
loopback algorithm, the processing stages reduce therefore
the number of chips and registers is reduced. Due to this,
there consumes a small amount of area. There is a reduction
in power consumption because it stores the values in
memory which makes the applications run effectively. Using

(

 V

)
(

 V

)

(

 V

)
(

 V

)

(

 V

)
(

 V

)

(

 V

)
(V

)

S. Allwin Devaraj, D. Magdalin Mary, P. Kannan, S. Esakki Rajavel, Cynthia Anbuselvi Thangaraj, K. B. Gurumoorthy and Blanie Scrimshaw
William/Journal of Engineering Science and Technology Review 17 (5) (2024) 104 - 109

 109

Xilinx ISE 13.2 the designs and simulation of modified
TALU are obtained because it is user-friendly. The modified
TALU performance will reduce the area and power
consumption comparing the previous pipelined work. Here
there is a reduction in area reduction in power consumption
and power leakage and there is a reduction in computational
costs. The proposed modified TALU design attain a delay up
to 1.046 ns, the number of chips used in this TALU is 21

which is reduced up to 50% than existing, and the value of
power consumption up to 0.109 W.

This is an Open Access article distributed under the terms of
the Creative Commons Attribution License.

References

[1] S. Gadgil and C. Vudadha, “Design of CNTFET-Based Ternary
ALU Using 2:1 Multiplexer Based Approach,” IEEE Transact.
Nanotechn., vol. 19, no. 1, pp. 661–671, Aug. 2020.

[2] A. P. Dhande and V. T. Ingole, “Design and Implementation Of 2
Bit Ternary ALU Slice,” in 3rd Int. Conf.: Sci. Electr., Technol.
Inform. Telecommun., Tunisa, Jan. 2005, pp. 1-11.

[3] Chetan Vudadha, S. Katragadda, and P. Sai Phaneendra, “2:1
Multiplexer based design for ternary logic circuits,” IEEE Asia
Pacific Conf. Postgrad. Res. Microelectron. Electron. (PrimeAsia),
Visakhapatnam, Dec. 2013, pp. 46-51.

[4] Chetan Vudadha, Sai Phaneendra Parlapalli, and M. B. Srinivas,
“Energy efficient design of CNFET-based multi-digit ternary
adders,” Microelectr. J., vol. 75, no.5, pp. 75–86, May 2018.

[5] G. Hills et al., “Understanding Energy Efficiency Benefits of
Carbon Nanotube Field-Effect Transistors for Digital VLSI,” IEEE
Transact. Nanotechn., vol. 17, no. 6, pp. 1259–1269, Sep. 2018.

[6] G. Hills et al., “Modern microprocessor built from complementary
carbon nanotube transistors,” Nature, vol. 572, no. 7771, pp. 595–
602, Aug. 2019.

[7] S. L. Murotiya and A. Gupta, “Design of CNTFET-based 2-bit
ternary ALU for nanoelectronics,” Int. J. Electr., vol. 101, no. 9,
pp. 1244–1257, Aug. 2013.

[8] G. Thakur, H. Sohal, and S. Jain, “Design and Analysis of Low
Power Approximate Multiplier Using Novel Compressor,” SN
Comp. Sci., vol. 5, no. 5, Apr. 2024.

[9] J. Deng and H.-S., P. Wong, “A Compact SPICE Model for
Carbon-Nanotube Field-Effect Transistors Including Nonidealities
and Its Application—Part I: Model of the Intrinsic Channel
Region,” IEEE Trans. Electron Dev., vol. 54, no. 12, pp. 3186–
3194, Dec. 2007.

[10] Subhendu Kumar Sahoo, K. Dhoot, and R. Sahoo, “High
Performance Ternary Multiplier Using CNTFET,” IEEE Comp.
Soc. Annual Sympos. VLSI, Hong Kong, Jul. 2018, pp. 269-275.

[11] M. M. Ghanatghestani, B. Ghavami, and H. Pedram, “A Ternary
Full Adder Cell Based on Carbon Nanotube FET for High-Speed
Arithmetic Units,” J. Nanoelectr. Optoelectr., vol. 13, no. 3, pp.
368–377, Mar. 2018.

[12] S. L. Murotiya and A. Gupta, “Hardware-efficient low-power 2-bit
ternary ALU design in CNTFET technology,” Int. J. Electr., vol.
103, no. 5, pp. 913–927, May. 2015.

[13] C. J. Williams et al., “MolProbity: More and better reference data
for improved all-atom structure validation,” Protein Sci., vol. 27,
no. 1, pp. 293–315, Nov. 2017.

[14] I. Takahashi and T. Noguchi, “A New Quick-Response and High-
Efficiency Control Strategy of an Induction Motor,” IEEE
Transact. Industry Applic., vol. IA-22, no. 5, pp. 820–827, Sep.
1986.

[15] R. Lorenzo and R. Pailly, “Single bit‐line 11T SRAM cell for low
power and improved stability,” IET Comp. Dig. Techniq., vol. 14,
no. 3, pp. 114–121, Mar. 2020.

[16] S. Pal, V. Gupta, W. H. Ki, and A. Islam, “Transmission gate-based
9T SRAM cell for variation resilient low power and reliable
internet of things applications,” IET Circ., Dev. & Sys., vol. 13, no.
5, pp. 584–595, Aug. 2019.

[17] Y. Lu, L. Li, H. Peng, and Y. Yang, “An Energy Efficient Mutual
Authentication and Key Agreement Scheme Preserving Anonymity
for Wireless Sensor Networks,” Sensors, vol. 16, no. 6, p. 837, Jun.
2016.

[18] N. S. Bhat, “Design and Modelling of Different SRAM’S Based on
CNTFET 32NM Technology,” Int. J. VLSI Des. Commun. Sys., vol.
3, no. 1, pp. 69–83, Feb. 2012.

