
Journal of Engineering Science and Technology Review 17 (5) (2024) 117-125 
 

Research Article 
 
 

A Comparative Study of a High Gain Observer and a Nonlinear Observer based on 
the Circle Criterion for Sensorless Induction Motor Control 

 
Abdelhak Benheniche1, Farid Berrezzek2 and Hacene Mellah3,* 

 
1Electromechanical Department, M.B. Ibrahimi University, Bordj Bou Arreridj 34000, Algeria 
2Fac. Sci & Tec., LEER Lab.Univ. Med Cherif Messaadia University, Souk Ahras 41000, Algeria 

3Electrical Engineering Department, Faculty of sciences and applied sciences, University of Bouira, 10000 Bouira, Algeria. 
 

Received 10 January 2024; Accepted 13 September 2024 
___________________________________________________________________________________________ 
 
Abstract 
 

This paper compares between a High-Gain Observer (HGO) with a nonlinear observer based on the Circle Criteria Observer 
(CCO) for sensorless control of induction motor (IM) drives. The circle criterion method is better for making nonlinear 
observers because it doesn't require as strict conditions as other methods that try to get rid of system nonlinearities using a 
transformation nonlinear state. However, the high gain observer makes an effort to dominate the nonlinearities in the system 
with a high-gain output adjustment term. The suggested study uses the backstepping control method and looks at three 
performance criteria: tracking the trajectory, rejecting disturbances, and maintaining steady-state stability. It was found that 
the circle-based nonlinear estimator works better than the interconnected observer, based on the results and the comparison 
criteria already mentioned. 
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1. Introduction 
 
Over the past decades, the field of sensorless control has 
become one of the most attractive areas of research in the 
control of electric actuators. This is due to the increased 
reliability and reduced cost of the system [1-2]. The essential 
elements of this domain are the electrical machine, the control 
strategy and the state observer. Due to their efficiency, 
effectiveness, simplicity, high reliability, resilience, and 
power density, asynchronous motors are the most commonly 
used machines in industries [3]. However, because of the rotor 
state-space variables and parameters of this motor are not 
measurable and it is nonlinear, highly linked, time fluctuating 
multivariate system, controlling, diagnosing, and monitoring 
is made more difficult [4]. To overcome the above problems 
and ensure the high performance of this machine, many types 
of nonlinear control approaches have been proposed and 
tested in practice. Among these strategies, we can cite the 
input-output linearization technique [5-6], sliding mode 
approach [7-8], Backstepping and Integral Backstepping 
method [9-11], flatness strategy [12-13] and adaptive 
algorithms [14-15] to solve the problem of time varying 
parameters. As mentioned above, Backstepping control is a 
nonlinear strategy widely used in a wide range of nonlinear 
systems that provides overall stabilization. On the other hand, 
it performs well even in the presence of variability. This 
technique is mainly based on the utilization of the Lyapunov 
function [15]. However, as with all nonlinear control 
techniques, it is necessary to have reliable and precise 
information on the various state variables of the system. In 
this situation, recourse to state-observers becomes an 
unavoidable solution. It should be noted that a state observer 
is a system that changes. Which can estimate the non-
measurable state variables from the available measurements 
of the inputs and outputs of the considered system. This 

software sensor is crucial not only for control, but also for 
system monitoring, diagnostics, and fault tolerant control 
strategies. 
 Recently, a number of estimation techniques have been 
used to estimate IM rotor variables [16]. These approaches 
include the extended Kalman filter, which is a stochastic 
recursive estimation strategy for nonlinear systems [17]. 
Researchers often opt for this approach due to its ease of 
implementation and popularity in estimation [18]. The 
nonlinear Luenberger observer is distinguished by its inherent 
simplicity in comparison to the other approaches, without 
reducing estimate precision [19]. The Model Reference 
Adaptive System (MRAS) observer has become very popular 
in sensorless IM control because of its ease of 
implementation, good stability, low computational effort, and 
its good performance [20]. The Sliding Mode (SM) observer 
has the advantage of being unaffected by rotor time constant 
fluctuations [21]. Yet, they have the following limitations: the 
triangle block structures, the sensitivity against measurement 
noises, and the peaking phenomenon's disturbing influence. 
 The nonlinear observer constructed on the circle criterion 
introduced by Arckak and Kokotovich [22] allows for 
manipulation of the non-linearities directly and with less 
severe restrictions than the approaches of linearization and 
large gains [23-24]. Among the observers who have found a 
place in the sensorless control of electrical machines, we cite 
the High-Gain Observer (HGO) [25]. The use of these 
observers is motivated by their capacity to estimate in a robust 
way the unmeasured states while attenuating in an asymptotic 
way the disturbances [26-28]. However, the disadvantages of 
this observer are in their implementation, their calibration, 
and their very high gain which sometimes limit their use [29-
30]. Motivated by the characteristics of the observers cited 
above, in this paper, we compare the HGO and the observer 
using the circle criterion and backstepping strategy control for 
a sensorless IM control scheme. The present paper is 
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structured as follows: In Section 2, the IM's modelling is 
provided. Section three is intended for the description of the 
nonlinear Circle Criterion Observer (CCO). In Section 4, we 
present the theory of the HGO. In Section 5, we briefly recall 
the backstepping control technique. Finally, we end with a 
comparative simulation and interpretation of the obtained 
results, which allows us to draw conclusions from this work. 
 
 
2. Mathematical Modelling of a Three-Phase IM 
 
In the reference frame of the stator fixed (𝜶-𝜷) axis, the 
nonlinear model of the IM introduced in this work is given as 
follows: 
 
�̇�(𝑡) = 𝑓(𝑥) + 𝑔(𝑥)𝑢(𝑡)       (1) 
 
𝑦(𝑡) = 𝐶	𝑥(𝑡)        (2) 
 
 We note that the stator currents, the rotor's flux and 
angular velocity are the state variables. The measurable vector 
components are the currents 𝑖!" and 𝑖!#. The controller vector 
𝑢(𝑡) = 1𝑢!" , 𝑢!# , 𝑇$4

%. 
 
 Where: 
 

𝑓(𝑥) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ −𝛾𝑖!" +

#
%!
𝜑&" + 𝛽𝜔𝜑&#
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(
%!
𝜑&" −𝜔𝜑&#

'"
%!
𝑖!# +𝜔𝜑&" −
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⎤
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 Where: 𝛾 = (
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H (
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+ (,+
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, 𝑘$ =
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.
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'#'!

 and 𝜔 = 𝑛0	𝛺. The 
following notations are introduced in order to simplify the 
mathematical equation forms: 𝑥( = 𝑖!"	, 𝑥1 = 𝑖!#	,𝑥4 =
𝜑&"	, 𝑥5 = 𝜑&# , 𝑥6 = Ω. 
 The IM model has a nonlinearity that results from 
multiplying the rotor flux components by the angular velocity 
in the first four equations, and multiplying the state variables 
in the system’s dynamic equation. This model becomes more 
complex when we take into account the variation of IM 
parameters such as rotor and/or stator resistances or 
inductances. 
 In this work, we focus on the nonlinearity caused by the 
change in rotor angular velocity, and we do not take into 
account the parameter variation. This kind of nonlinear model 
is commonly used for nonlinear control, condition 
monitoring, and fault diagnosis of electric motors [31-32]. 
However, for squirrel cage IM, all rotor-related parameters 
and states are not measurable, such as fluxes, resistances, and 
inductances. These states and parameters must be estimated 

as they are necessary for the control, monitoring, and 
diagnosis of the IM. 
 
 
3. Nonlinear Observer Design Based on Circle Criterion 
 
The structure of the nonlinear observer that utilizes the circle 
criterion adopted in this study to estimate of the rotor’s flux 
and speed is the focus of this section. 
 Arcak and Kokotovic came up with the first version of this 
observer [22-23]. It works for continuous systems that can be 
split into linear and nonlinear parts, as long as the 
nonlinearities meet the sector property. 
 The advantage of this approach is to treat system 
nonlinearities with less restrictive conditions [22-24]. The 
essential theory and theorems used in the design of the 
nonlinear observer are illustrated as the following: 
 The nonlinear model (1) - (2) of the IM can be rewritten 
as: 
 
�̇�(𝑡) = 𝐴	𝑥(𝑡) + 𝜓[𝑢(𝑡), 𝑦(𝑡)] + 𝑁𝜑[𝑀. 𝑥(𝑡)]    (3) 
 
𝑦(𝑡) = 𝐶	𝑥(𝑡)       (4) 

 
Where: 
 
 𝑥 ∈ ℝ- is the state variable, 𝑦 ∈ ℝ0and 𝑢(𝑡) ∈ ℝ/ is the 
output and the control input of the system. 𝐴, 𝐶	and 𝑁 are 
assumed to be known and constant matrices with appropriate 
dimensions provided that the system must be observable. 
 𝜓[𝑢(𝑡), 𝑦(𝑡)] is an arbitrary real-valued vector that 
depends only on the system inputs and outputs, 𝑢(𝑡) and 𝑦(𝑡) 
respectively. The last term of the system (3) 𝜓[𝑀	𝑥(𝑡)] which 
is a time-varying vector function that verifies the sector 
property, serves as the mathematical representation of the 
system's nonlinear component. We note that 𝜑(. ) and 𝜓(. , . ) 
are locally Lipschitz. 
 A primary restriction stating that the nonlinear observer's 
function is a non-decreasing function 𝜑(. ) is a requirement 
for its structure. 
 This restriction means that: 
 
(𝜁 − 𝜉)[𝜑(𝜁, 𝑡) − 𝜑(𝜉, 𝑡)] ≥ 0	∀	𝜁, 𝜉	𝜖	𝑅7 
 
If  
 
(𝜁 − 𝜉) = 𝜂 and [𝜑(𝜁, 𝑡) − 𝜑(𝜉, 𝑡)] = 𝜑(𝜂, 𝑡)    (5) 
 
With: 
𝜑(𝜂, 𝑡) is a nonlinearity function. 
such as 𝜑(𝜂, 𝑡): [0	 + ∞[	× 𝑅0 → 𝑅0 is said to appertain to 
the sector [0	 + ∞[ if 𝜂𝜑(𝜂, 𝑡) ≥ 0. 
 The previous equation is also equal to the following if 
𝜑(𝜂, 𝑡) is a continuously differentiable function [22], [23]: 
 
8
89
𝜑(𝜂, 𝑡) ≥ 0	∀	𝜂	𝜖𝑅       (6) 

 
 According to these restrictions, the observer will 
therefore be given as follows: 
𝑥ȧ(𝑡) = 𝐴𝑥a(𝑡) + 𝜓[𝑢(𝑡), 𝑦(𝑡)] + 𝐿[𝑦(𝑡), 𝑦a(𝑡)] +
𝑁𝜑[𝑀𝑥a(𝑡) + 𝐾:(𝑦(𝑡) − 𝑦a(𝑡))]      (7) 
 
With: 
 𝑥a(𝑡) and 𝑦a(𝑡) are the estimate of the state 𝑥(𝑡) vector and the 
output 𝑦(𝑡) vectors respectively.  
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𝑀 is a vector that satisfies the condition of linear 
independence with the output vertor C. 
 The state estimation error 𝑒(𝑡) is computed as a difference 
between the state 𝑥(𝑡) and state estimation 𝑥a(𝑡). 
 The gain matrices 𝐿 and 𝐾: are determined as part of the 
nonlinear observer dynamic. 
 In order to carry out the previous observer, the main 
theorem and the conditions used in this work are recalled 
while adhering to the sector property as follows: 
 
Theorem 1: According to [22] and [33] if we consider a 
nonlinear system of the form represented by equations (3) and 
(4) with the nonlinear part satisfying the equations of the 
circle criterion given by equations (5) and (6). If there exists 
a symmetric and positive definite matrix	𝑆𝜖	𝑅-;- and a set of 
row vectors 𝐾:𝜖	𝑅-;- such that the following Linear Matrix 
Inequalities (LMI) are verified we have [18], [21]: 
 
(𝐴 − 𝐿𝐶)%𝑆 + 𝑆%(𝐴 − 𝐿𝐶) + 𝑄 ≤ 0      (8) 
 
𝑆𝑁 + (𝑀 −𝐾:𝐶)% = 0       (9) 
 
With: 
 
𝑄 = 𝜀𝐼-: Positive gain matrix, 
𝐼- : The 𝑛 × 𝑛 identity matrix, 
𝜀: A positive real number. 
 
 From equations (7), (8) and (9), how the state observation 
error e(t) changes over time can be derived as follows: 
 
�̇�(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡) + 𝑁1𝜑>𝑀𝑥(𝑡)? − 𝜑>𝑀𝑥a(𝑡)? +
𝐾:(𝑦(𝑡) − 𝑦a(𝑡))4      (10) 
 
 Let 𝜁 = 𝑀. 𝑥(𝑡), and 𝜉 = 𝑀. 𝑥a(𝑡) + 𝐾:(𝑦(𝑡) − 𝑦a(𝑡) by 
taking 𝜂 = 𝜁 − 𝜉 = (𝑀 −𝐾:𝐶)𝑒(𝑡), the equation (10) 
provides the dynamics of the state estimation error, which 
may be viewed as a function of the variable η and then 
[𝜑(𝜁) − 𝜑(𝜉)] = 𝜑(𝜂, 𝑡). Thereafter, taking into 
consideration the prior outcome, the error dynamics become: 
 
�̇�(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡) + 𝑁. ℎ(𝜂, 𝑡)    (11) 
 
𝜂 = (𝑀 −𝐾:𝐶)𝑒(𝑡)     (12) 
 
 From equations (11) and (12), we notice that the design 
issue of the nonlinear estimator is similar to the stabilization 
of the dynamics error. 
 Using a CLF : 𝑉 = 𝑒%𝑆𝑒, the stability of the observer 
error dynamics is investigated. 
 The time derivative of the Lyapunov function is expressed 
as follows: 
 
�̇� = �̇�%𝑠𝑒 + 𝑒%𝑆�̇�%     (13) 
 
 Equations (11) and (12) can be used to get the derivative 
of the Lyapunov function as follows: 
 
(𝐴 − 𝐿𝐶)%𝑆 + 𝑆%(𝐴 − 𝐿𝐶) ≤ −𝑄    (14) 
 
and 
 
𝑆𝑁 = −(𝑀 −𝐾:𝐶)%     (15) 
 

 The derivative of the Lyapunov function can be written 
as follows: 
 
�̇� ≤ −𝑒%𝑄𝑒 − 2. 𝜂%𝜑(𝜂, 𝑡)     (16) 
 
 The circle criterion has the benefit of handling the 
system's nonlinearities directly and with less limitation. 
However, this strategy introduces LMI's limitations. Fig. 1 
represents the CCO's flowchart. 
 

 
Fig. 1. Flowchart of the CCO 
 
 
4. Nonlinear High Gain Observer 
 
In the purpose to the design of the HGO the model of a 
uniformly observable nonlinear system is presented in the 
following manner [26]: 
 
�̇� = 𝑓(𝑥, 𝑢) + 𝜀     (17) 
 
𝑦 = 𝐻𝑥 = 𝑥(     (18) 
 
Where: 
 

𝑥 = o
𝑥(
𝑥1
⋮
𝑥<
q ; 𝜒 =

⎣
⎢
⎢
⎢
⎡
0
⋮
0

𝜒<,(
𝜒< ⎦

⎥
⎥
⎥
⎤
 and 𝑓(𝑥, 𝑢) =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑓((𝑥(, 𝑥1, 𝑢)

𝑓1(𝑥(, 𝑥1, 𝑥4, 𝑢)
⋮

𝑓<,((𝑥(, 𝑥1, … , 𝑥<,(, 𝑢)
𝑓<(𝑥, 𝑢) ⎦

⎥
⎥
⎥
⎥
⎤

 and 𝐻 = u𝐼-( , 0-(∗-$ , … . 0-(∗-*(v 
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 With:𝑥 ∈ ℝ-, 𝑥= ∈ ℝ0 for 𝑘 = 1,2,… , 𝑞 and 𝑛( ≥ 𝑛1 ≥
⋯𝑛<. The input ⊂ 𝕌a compact set of ℝ/, the output 𝑦 ∈ ℝ-(. 
I>(is the n( × n( identity matrix. 0>(×>+ is the n( × n@ null 
matrix, j ∈ {2,… , q − 1}. 𝜒A ∈ ℝ>, , k ∈ {q − 1, q}, each 𝜒A 
is a bounded real valued function that is unknown and 
dependent on uncertain parameters, in our situation, we 
suggest	𝜒A = 0. 
 The design of a HGO of the system (17) and (18) requires 
the following hypotheses: 

• There exist 𝜏, 𝜆 where 0 < 𝜏 ≤ 𝜆 such that for all 
𝑘 ∈ {1,… , 𝑞 − 1}, 𝑥 ∈ ℝ-, 𝑢 ∈ 𝑈 we have: 

 

0 < 𝜏1𝐼-= ≤ �
𝜕𝑓=(𝑥(:= , 𝑢)
𝜕𝑥=7( �

% 𝜕𝑓=(𝑥(:= , 𝑢)
𝜕𝑥=7( ≤ 𝜆1𝐼-= 

 
 Furthermore, we adopt that: 
 

Rank�
∂fA>x(:A, u?
∂xA7( � = nA7( 

 
• The function 𝑓(𝑥, 𝑢) is globally Lipchitz with 

respect to 𝑥, uniformly in 𝑢. 
 By respecting the conditions below, the design of the 
HGO of the system (17-18) can be written: 
 
𝑥ȧ = 𝑓(𝑥,� 	𝑢) − 	𝜃Λ,((𝑥a)∆C,(𝑆,(𝐻%𝐻�(𝑥a − 𝑥()  (19) 
 
 With Λ,((𝑥a) is defined as the left inverse of block 
diagonal matrix Λ(𝑥a): 
 

Λ(𝑥a) = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔 �𝐼-= ,
𝜕𝑓=(𝑥(:= , 𝑢)
𝜕𝑥=7( , … ,�

𝜕𝑓=(𝑥	� , 𝑢)
𝜕𝑥a=7(

<,(

DE(

� 

 

ΔF(𝑥a) = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔  𝐼-( ,
1
𝜃 𝐼-( , … ,

1
𝜃<,( 𝐼-(¡ , 𝜃 > 0 

 
𝜃 is a real value that represents the observer's unique design 
parameter. 
S is a definite positive matrix, solution of the following 
algebraic Lyapunov equation: 
 
𝑆 + 𝐴%𝑆 + 𝑆𝐴 = 𝐻%𝐻     (20) 
 
With: 𝐻 = 1𝐼-( , 0-( , … , 0-(4 , 

𝒜 = ¥0 �̅�
0 0

§ , �̅� = 𝑏𝑙𝑜𝑐𝑘𝑑𝑖𝑎𝑔>𝐼-( , 0-( , … , 0-(? ∈ ℝ
-((<,() 

 
 It should be highlighted that equation (20) is independent 
of the system characteristics and that an analytical 
representation of the solution is possible. 
 
𝑆(𝑖, 𝑗) = (−1)D7I𝐻D7I,1

I,( 𝐼-(     (21) 
 
With: 
 

𝐻ID =
𝑗!

𝑖! (𝑗 − 𝑖)! 𝑓𝑜𝑟	1 ≤ 𝑖, 𝑗 ≤ 𝑞 

 
 According to these circumstances, the correction gain of 
equation (19) can be explicitly given as follows: 
 

𝜃𝛬,((𝑥a)𝛥C,(𝑆,(𝐻% =

⎣
⎢
⎢
⎢
⎡ 𝜃𝐻(

<𝐼-(
𝜃1𝐻1

< uJ)(
J;$

(𝑥, 𝑢)v
,

:
𝜃1𝐻<

< u𝛱DE(
<,( J)-

J;-.(
(𝑥, 𝑢)v

,

⎦
⎥
⎥
⎥
⎤

  (22) 

 
 It must be noted that the HGO design is fairly straight 
forward [34]. 
 The diagram represented in Fig. 2 illustrates the HGO 
flowchart. 
 

 
Fig. 2. flowchart of the HGO 
 
 
5. Backstepping controller design for IM speed and flux 
 
In this study, the sensorless control scheme based on 
backstepping control is used first with a circle criterion 
nonlinear state observer and then with a nonlinear HGO for 
the IM as depicted in Fig.3. The implementation of these 
speed-sensorless control approaches requires the observation 
of the unmeasured rotor flux linkage and speed based on the 
measurements of the stator's currents and voltage. Two stages 
make up the conception of the backstepping method. 
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Fig. 3. Synoptic diagram of flux and velocity observation 
 
 

Ø Step 1 
To ensure accurate tracking performance, it is essential to 
design the controllers and specify the trajectories that the 
system would like to take. 
 We therefore define a desired trajectory, 𝑦&K) =
>Ω&K), 𝜑&K)1 ?. 
 The reference trajectories for the flux module and rotor 
speed are denoted by Ω&K)	𝑎𝑛𝑑	𝜑&K)1 . We mention 𝑥68 =
Ω&K), 𝑥L8 = 𝜑&K)1  ,with 𝜑&1 = 𝜑&"1 	+ 𝜑&#1  
 
Where: 
 
𝑧( = 𝑥68 − 𝑥6     (23) 
 
𝑧1 = 𝑥L8 − 𝑥L     (24) 
 
 The tracking errors for flux magnitude and speed are 
represented by the variables 𝑧(and 𝑧1, respectively. 
 The following expressions represent the dynamic error: 
 
�̇�( = �̇�68 − u

-%'"
I'!

(𝑥4𝑥1 − 𝑥5𝑥() −
%/
I
− )!&

I
𝑥6v   (25) 

 
�̇�1 = �̇�L8 − u

1'"
%!
(𝑥4𝑥( + 𝑥5𝑥1)v +

1
%!
𝑥L   (26) 

 
 The definitions of the virtual control equations are as 
follows: 
 
𝛼( = u-%'"

I'!
(𝑥4𝑥1 − 𝑥5𝑥()v    (27) 

 
𝛽( = u1'"

%!
(𝑥4𝑥( + 𝑥5𝑥1)v    (28) 

 
 Equations (25) and (26) could be expressed as follows: 
 
�̇�( = �̇�68 − 𝛼( +

%/
I
+ )!&

I
𝑥6     (29) 

 
�̇�1 = �̇�L8 − 𝛽( +

1
%!
𝑥L    (30) 

 
 The candidate Lyapunov function chosen determines the 
dynamic stability of the errors: 
 
𝑣( =

(
1
[𝑧(1 + 𝑧11]     (31) 

 
 We derive the equation (31), we get: 

 
�̇�( = 𝑧(�̇�(+𝑧1�̇�1      (32) 
 
 By selecting the derivatives in the following manner, the 
Lyapunov function's negativity is obtained: 
 
�̇�( = −𝑐(𝑧(      (33) 
 
�̇�1 = −𝑐1𝑧1      (34) 
 
 Virtual control may take the following forms: 
 
𝛼( = 𝑐(𝑧( + �̇�68 +

%/
I
+ )!&

I
𝑥6    (35) 

 
𝛽( = 𝑐1𝑧1 + �̇�L8 +

1
%!
(𝑥L8 − 𝑧1)   (36) 

 
𝑐( and	𝑐1 : positive gains that define the closed loop's 
dynamic. 
 
 The virtual control in equations (35–36) is selected to 
meet the control principles and serve as a reference for the 
subsequent stage in developing the backstepping control 
strategy. 
 

Ø Step 2 
In this stage, we define novel error dynamics as follows: 
 
𝑧4 = α( − u

-%'"
I'!

(𝑥4𝑥1 − 𝑥5𝑥()v   (37) 
 
𝑧5 = 𝛽( − u

1'"
%!
(𝑥4𝑥( + 𝑥5𝑥1)v   (38) 

 
𝑧4 and 𝑧5 are the novel dynamics of the errors. 
 
 We now present the dynamics errors in terms of 𝑧4 and 𝑧5. 
 
�̇�( = −𝑐(𝑧( + 𝑧4     (39) 
 
ż1 = −c1z1 + z5     (40) 
 
 The following equations (37) and (38) provide the errors 
dynamics. 
 
ż4 = α1 − u

-%M
I
>𝑥4𝑢!# − 𝑥5𝑢!"?v    (41) 

 
�̇�5 = 𝛽1 − 12𝐾𝑅&>𝑥4𝑢!" + 𝑥𝑢!#?4   (42) 
 
Where: 
 

𝛼1 = �̇�( +
𝑛0𝐿/
𝑗𝐿&

¥ 𝛾 +
1
𝑇&
¡ (𝑥4𝑥1 − 𝑥5𝑥()§

+
𝑛0𝐿/
𝑗𝐿&

u𝑛0Ω[(𝑥4𝑥( + 𝑥5𝑥1) + 𝐾𝑥L]v 

 

𝛽1 = �̇�( +
2𝐿/
𝑇&

¥ 𝛾 +
1
𝑇&
¡ (𝑥4𝑥( + 𝑥5𝑥1) −

𝐾
𝑇&
𝑥L§

+
2𝐿/
𝑇&

¥𝑛0Ω(𝑥4𝑥1 − 𝑥5𝑥()

−
𝐿/
𝑇&
(𝑥(1 + 𝑥11)§ 
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 It is evident that equations (41) and (42) include the actual 
control elements. So, the final Lyapunov function could be 
constructed as: 
 
𝑣1 =

(
1
[𝑧(1 + 𝑧11 + 𝑧41 + 𝑧51]    (43) 

 
 The final Lyapunov function's time derivative can be 
represented as follows by applying equations (39)–(42): 
 

�̇�1 = −𝑐(𝑧(1 + 𝑧(𝑧4 − 𝑐1𝑧11 + 𝑧1𝑧5 − 𝑐4𝑧41 −𝑐5𝑧51+𝑧4 �𝑧( +

𝑐4𝑧4 + α1 −
-%M
I
>𝑥4𝑢!# − 𝑥5𝑢!"?� +𝑧5>𝑧1 + 𝑐5𝑧5 + 𝛽1 −

2𝐾𝑅&1>𝑥4𝑢!" + 𝑥5𝑢!#?4?     (44) 
 
Where: 
 
𝑐4 and	𝑐5: positive design gains that define the closed loop's 
dynamic. 
 
 The Lyapunov function's negative is dependent on: 
 
�̇�1 = −𝑐(𝑧(1 − 𝑐1𝑧11 − 𝑐4𝑧41 − 𝑐5𝑧51 ≤ 0  (45) 
 
 As a result, we chose voltage control as follows: 
 
𝑐4𝑧4 + 𝑧( + α1 −

-%M
I
>𝑥4𝑢!# − 𝑥5𝑢!"? = 0  (46) 

 
𝑐5𝑧5 + 𝑧1 + 𝛽1 − 2𝐾𝑅&1>𝑥4𝑢!" + 𝑥5𝑢!#?4 = 0 (47) 
 
 The following stator voltages are now determined as: 
 
𝑢!" =

(
;0
¥(#$7N$7O1N1)

1MP!
𝑥4 −

I
-%M

[𝛼1 + 𝑧( + 𝑐4𝑧4]𝑥5§ (48) 
 
𝑢!# =

(
;0
¥(#$7N$7O1N1)

1MP!
𝑥5 +

I
-%M

[𝛼1 + 𝑧( + 𝑐4𝑧4]𝑥4§ (49) 
 
 
6. Simulation Results 
 
To illustrate the advantages of the proposed study, an 
induction machine with its proper characteristics is 
considered as presented in Table 1. 
 
Table 1. Induction motor characteristics 

Parameters  Symbols Value Unit 
Motor’s power Pa  1.5 KW 
Stator voltage  U  220 V 
Number of pair poles  p  2 
Stator frequency F 50 HZ 
Load Torque  Tl  5 N.m 
Stator inductance  Ls  0.274 H 
Rotor inductance  Lr 0.274 H 
Mutual inductance  Lm 0.258 H 
Stator resistance  Rs 4.850 𝛺 
Rotor resistance  Rr 3.805 𝛺 
Rotor angular velocity  ω 297.25 rd/s 
Friction coefficient  Fre 0.00114 N.s/rd 
Inertia coefficient  j 0.0031 Kg2/s 

 
 The simulation block diagram of the Integral 
Backstepping control combined with an observer nonlinear of 
the induction motor model is given in Fig. 4. 

 Two steps are necessary to carry out the simulation of the 
proposed scheme. 

• Estimating the state variable vector based on the 
inputs (voltages) and outputs (currents) 

• Use of the estimated variables to calculate the 
control 
 

 
Fig. 4. Investigated sensorless control of induction motor drive using 
either High Gain observer and Circle criterion observer 
 
 In this section, a nonlinear sensorless control system 
applied to IM and backstepping control was designed and 
tested to compare the performance of the HGO and the CCO. 

To evaluate the effectiveness of the two observers and 
therefore to draw an adequate comparison, four points were 
taken into consideration: trajectory tracking, low-speed 
operation, high-speed operation, and robustness to a load 
torque in both directions of rotation. 
 A nominal load torque of 5 Nm is applied to the IM from 
2 to 4 seconds, with an increasing reference speed at 3 sec, 
causing a peak in the speed curve. At 5 sec, the reference 
speed is reversed, resulting in another peak in the speed curve. 
From 5.8 to 6.8 sec, a nominal load torque is applied again (-
5 Nm). At 7 sec, the IM is forced to follow a reference speed 
to zero and then stabilize at 20 rad/sec, as shown in Fig. 3. 
Throughout these scenarios, the IM speed closely follows the 
reference. 
 Throughout the experiment, the flux vector's norm is 
constant and equal to 1 Wb. 
 Firstly, we start with the CCO for that, we must primarily 
solve the LMI conditions, the relations (8) and (9), using an 
LMI tool such as the LMI toolbox of the MATLAB software. 
The nonlinear observer gain matrices L and Ko obtained and 
that guarantee the system's stability are: 
 

𝐿 =

⎣
⎢
⎢
⎢
⎡
−132.3581 −0.0000
0.0000 −132.3581
1.7914 −0.0000
0.0000 1.7914
−0.0000 0.0000 ⎦

⎥
⎥
⎥
⎤
, 𝐾( =

[5.4133 −3.0149],	𝐾1 = [3.0149 −5.4133], 𝐾4 =
[−4.0085 5.0085], and 𝐾5 = [5.0085 −4.0085] 
 
 The appropriate Lyapunov matrix for the LMI feasibility 
test is:  
 
𝑃

=

⎣
⎢
⎢
⎢
⎡
0.1787 −0.0995 0.0029 −0.0003 −0.0330
−0.0995 0.1787 −0.0003 0.0029 0.0330
0.0029 −0.0003 0.0871 −0.0080 −0.0000
−0.0003 0.0029 −0.0080 0.0871 0.0000
−0.0330 0.0330 0.0000 −0.0000 −0.0000⎦

⎥
⎥
⎥
⎤
 

 
With 𝜀 = 0.04. 
 Fig. 5 shows the measured and estimated torque of the two 
observers and the load torque. Fig. 6 shows the measured and 
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estimated speeds of the two observers and the reference 
speed. Fig. 7 shows the measured and estimated flux of the 
two observers and the reference flux. Fig. s 8 and 9 show the 
measured and estimated alpha and beta stator currents of the 
two observers, respectively. 
 According to Fig. 6, we notice that the two observers 
correctly estimate the rotor speed and ensure a good trajectory 
tracking. However, according to the zooms carried out during 
the rotor speed reversal shows that CCO is more efficient 
compared to the HGO. 
 After looking at the results represented in Fig.s 5 and 6, 
we can see that the backstepping control strategy and the CCO 
work well together, which is efficient and robust in terms of 
disturbance rejection (load torque) and perfect tracking of the 
rotor speed trajectory. 
 These findings lead us to the conclusion that sensorless 
control with the nonlinear backstepping approach offers an 
excellent solution for sensorless control of the IM. 

 

 
Fig. 5. Measured and observed electromechanical torque for a nonlinear 
observer based on the CCO and HGO 
 

 
Fig. 6. Reference, measured and estimated rotor angular velocity for a 
nonlinear observer based on the CCO and HGO 

 

 
Fig. 7. Reference, measured and estimated rotor flux norm modulus for 
nonlinear observers based on the CCO and HGO 

 

 
Fig. 8. Measured and estimated α-rotor flux components for a nonlinear 
observer based on the CCO and HGO 

 
Fig. 9. Measured and estimated α-stator current components for a 
nonlinear observers based on the CCO and HGO 

 
 

 Analyzing Fig.s 5 and 6, we notice that the variables 
estimated by the CCO perfectly follow the measured 
variables. However, the variables estimated by HGO oscillate 
around the measured variables; this clearly shows the 
observer's efficiency. 
 Figures 8 and 9 show that the alpha stator current and 
alpha rotor flux are perfectly sinusoidal and follow the 
measured variables. 
 The results of the IM's nonlinear control employing a 
backstepping control combined with CCO under a load torque 
disturbance clearly demonstrate the rejection of this 
disturbance and the excellent tracking of the speed reference. 

 
 

7. Conclusion 
 
In this research, a comparative study was carried out between 
the observer based on the circle criterion and the high-gain 
observer in the control scheme using the backstepping control 
strategy. First, we note that the stability of the system is 
ensured by the control backstepping strategy based on the 
Lyapunov function and associating the two observers, despite 
the nonlinearity of the IM model. According to the simulation 
results, we can observe that the two observers correctly 
estimated the non-measurable parameters. However, the CCO 
observer presents better performances in terms of trajectory 
tracking, disturbance rejection, absence of oscillations, and 
especially during transient regimes. Moreover, we note that 
the ease of use of the HGO lies in the ease of its 
implementation and adjustment. Finally, we would like to 
emphasize that the proposed CCO observer handles the 
nonlinearities of the system directly with less restriction. 
Additionally, the observer is simple to implement and offers 
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satisfactory results for induction motors. However, this 
approach introduces constraints of the type LMI. 
 
 

This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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Nomenclature 
Nomenclature  

𝐴 State matrix 
𝐵 Input matrix 
𝐶 Output matrix 

𝑐(, 𝑐1 𝑐4, 𝑐5 positive gains that define the closed loop's dynamic 
CCO Circle Criterion Observer 
CLF Candidate Lyapunov Function 
𝑒(𝑡) State estimation error  
𝑓&K Friction coefficient 

𝑔(𝑥), 𝜑(𝜂, 𝑡) Functions concerned circle criterion observer. 
Functions involved in circle criteria observer design 

HGO High-Gain Observer 
IM Induction motor 
𝐼- The 𝑛 × 𝑛 identity matrix. 

𝑖!" , 𝑖!# The stator currents components 
𝐽 Moment of inertia coefficient 

𝐾:, 𝐿 Gain matrices of the nonlinear observer 
Nonlinear observer gain matrices 

LMI Linear Matrix Inequalities 
𝐿/ Mutual inductance 
𝐿!, 𝐿& Stator and rotor self-inductance 

MRAS Model Reference Adaptive System 
𝑛0 Number of pair pole 

𝑃,𝑁,𝑀Q Gains concerned circle criterion observer 
𝑄 Positive gain matrix 
𝑅& Rotor resistance 
𝑅! Stator resistance 
SM Sliding Mode 
𝑆 Symmetric and positive definite matrix 
S Positive matrix solution of the algebraic Lyapunov equation 
	𝑇$ Mechanical load torque 
𝑇$ Load torque 

𝑇!, 𝑇& Stator and rotor time constants  
𝑢(𝑡) control vector 

𝑢!" , 𝑢!# 𝛼 − 𝛽 stator voltage component 
V Lyapunov function 
𝑣( candidate Lyapunov function 
𝑣1 Final Lyapunov (function) ensuring the stability of the global system 
�̇�1 Final Lyapunov function's time derivative 

𝑥(𝑡), 𝑦(𝑡) State and output vectors 
𝑧(, 𝑧1, 𝑧4, 𝑧5 Tracking errors in the backstepping controller 

�̇�( dynamic error of rotor speed 
�̇�1 dynamic error of rotor flux modulus 
ż4, ż5 Dynamic virtual variables’ errors 
𝛼(, 𝛽( Virtual controls 
𝛼1, 𝛽1 Output signals of the controllers of step two 
𝜀 Positive real number 
𝜁, 𝜉 Real positive numbers 
𝜃 Real value that represents the observer's unique design parameter. 
𝜎 Constant of Blendel 
𝜏, 𝜆 Real positive numbers  
. ̂ Index of the estimated value 
. ̇ Index of the time differential operator (d/dt) 
.&K) Reference index 
𝜒 Bounded real valued function that is unknown and dependent on uncertain parameters 

𝜑(. , 𝑡), 𝜓[. , . ] Nonlinear functions 
𝜑&" , 𝜑&# Rotor flux components 

𝛺 Rotor speed 
𝜔 Rotor angular velocity 
𝜔 Rotor velocity 

 


