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Abstract 
 

In sewage disposal processes, real-time and accurate monitoring of activated sludge microorganism types and quantities 
can facilitate prompt adjustments to process parameters, thereby mitigating lag effects inherent in sewage treatments. 
Traditionally, microscopic examinations of activated sludge microorganisms have relied on manual observation and 
counting by personnel to assess microorganism types and quantities under varying operational conditions. This method is 
inefficient and produces results lacking accuracy and consistency. To address the challenges associated with activated 
sludge microorganism detection, an intelligent analysis method underpinned by deep learning technology was proposed 
in this study. The methodology encompassed three primary stages: pre-processing of activated sludge microorganism 
micrographs, feature extraction from image blocks using a dedicated module, and determination of microorganism types 
and locations via a microbial information analysis module. To support this study, an activated sludge microorganism 
image dataset was constructed, comprising 2,000 images of four microorganism species: Epistylis, Nematoda, Lecane, 
and Arcella. Experimental results demonstrate that, the proposed method achives a mean absolute error of 5.86 and a 
mean squared error of 12.43 on the test set, surpassing the performance of six existing comparison methods. This 
exceptional performance underscores the method’s significant potential for application in activated sludge microorganism 
detection. This study marks a substantial advancement over conventional manual detection techniques by leveraging deep 
learning to accurately identify activated sludge microorganisms. The proposed method enhances the speed, accuracy, and 
consistency of microorganism detection, thereby contributing to increased automation in water quality monitoring during 
sewage treatment. Ultimately, this study promotes intelligent efficiency in sewage treatments and provides a strong 
foundation for developing practical activated sludge microorganism detection system. 
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1. Introduction 
 
The global scale of urban sewage treatment is substantial, 
with approximately 70% of constructed sewage treatment 
plants applying the activated sludge method [1-2]. Currently, 
microscopic examination of activated sludge 
microorganisms relies on manual observation and counting 
by personnel to assess microorganism types and quantities 
under varying operational conditions [3]. However, this 
method presents significant limitations. The accuracy of 
microscopic observations is heavily influenced by the 
observer’s experience and attention, leading to inconsistent 
and unreliable detection results across different individuals 
[4]. Furthermore, even experienced analysts struggle in 
identifying diverse microorganisms without consulting 
reference materials [5].  

Activated sludge comprises flocculent particles formed 
by a complex mixture of microorganisms, including 
protozoa, metazoans, fungi, and bacteria, as well as 
suspended solids and colloidal substances in sewage. The 
biological constituents of activated sludge exhibit dynamic 
characteristics [6-7]. Understanding the fundamental 
relationship between the types and quantities of activated 
sludge microorganisms and the aquatic biochemical 
environment enables the assessment of sewage treatment 
plant operations and purification degreed by observing 
microbial composition under varying operational conditions 
[8]. In the sewage treatment process, operational anomalies 

often manifest with subtle changes in water quality 
indicators, hindering timely detection. Consequently, when 
sewage treatment efficiency declines and operational 
parameters are adjusted, the restoration of optimal activated 
sludge conditions can be protracted [9]. However, activated 
sludge microorganisms are sensitive to environmental 
fluctuations, resulting in pronounced shifts in microbial 
population and abundance under adverse conditions. 
Therefore, real-time and accurate monitoring of activated 
sludge microorganism composition is essential for efficient 
sewage treatment operations. This approach enables prompt 
adjustments to process parameters, mitigating the lag effects 
inherent in the treatment process [10-11]. Currently, the 
prevalent method of manual microscopic examination of 
activated sludge microorganisms cannot effectively achieve 
real-time, accurate monitoring, thereby contributing to lag 
effects within the sewage treatment process.  

In recent years, deep learning methodologies, 
exemplified by convolutional neural networks, have 
catalyzed the rapid advancement of artificial intelligence 
(AI) [12-13]. This condition yields groundbreaking 
achievements in domains, such as autonomous driving [14-
15], intelligent monitoring systems [16-17], and computer-
aided diagnosis [18-19]. However, mature AI-based 
products for detecting water quality indicator 
microorganisms in activated sludge are currently 
unavailable. Moreover, research on the classification and 
identification of microorganisms in microscopic 
examinations of activated sludge remains limited. 
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Nevertheless, investigations in related areas suggest the 
feasibility of intelligent microorganism detection in 
activated sludge [20-21]. We introduce a novel AI method 
based on deep learning for activated sludge microorganism 
detection to address the challenges of low efficiency, poor 
accuracy, low consistency, and high costs associated with 
detecting water quality indicator microorganisms in the 
sewage treatment process. Our experimental findings 
demonstrate that the proposed method yield satisfactory 
detection results for micrographs of activated sludge 
microorganisms, exhibiting robust detection performance 
and generalization capabilities across various 
microorganisms. This approach outperforms existing 
methods, exhibiting significant potential for application in 
microscopic examinations of activated sludge 
microorganisms. The approach involving the integration of 
deep learning into the realm of microscopic examination of 
activated sludge microorganisms surpasses traditional 
manual detection methods. This technique enables the rapid 
identification of indicator microorganisms reflective of 
water quality status, including their presence, absence, and 
fluctuations, thereby enhancing the automation of water 
quality detection and improving sewage treatment efficiency. 
 
 
2. State of the art 
 
In the sewage treatment process, real-time and accurate 
monitoring of activated sludge microorganism types and 
quantities is crucial for promptly adjusting process 
parameters and mitigating lag effects [10-11]. Currently, 
microscopic examination of activated sludge 
microorganisms relies on manual observation and counting 
to assess microorganism types and quantities under varying 
operational conditions [3-6]. However, this method is 
inefficient, prone to inter-observer variability, and yields 
inconsistent results [4-5]. The use of computer vision 
technology, which has rapidly progressed, to assist in the 
intelligent detection of activated sludge microorganisms has 
become an inevitable trend [12-13]. Existing literature 
described the extraction of activated sludge microorganism 
features using fully automatic and interactive algorithms, 
followed by classification using decision tree methods, 
successfully identifying microorganisms, such as 
Paramecium, Rotifer, Nematoda, Vorticella, Epistylis, and 
Catenula [22]. Other studies had developed semi-automatic 
image analysis programs using multivariate statistical 
techniques for protozoan and metazoan identification and 
classification [23] and proposed protozoan detection 
methods using the active contour model [24]. Nevertheless, 
traditional image detection methods based on pattern 
recognition were constrained by algorithm limitations, 
relying solely on manually selected features and exhibiting 
poor generalization capabilities, thereby failing to satisfy the 
practical demands of activated sludge microorganism 
detection. In recent years, the emergence of deep learning as 
a new-generation AI paradigm [25-27] had prompted its 
application in activated sludge microorganism detection. 
Deep learning approaches incorporating attention 
mechanisms and transfer learning for accurate 
microorganism species identification [28] had been 
explored, and the YOLOv3 model with attention 
mechanisms had been enhanced for detecting four types of 
activated sludge microorganisms: Vorticella, Catenula, 
Lecane, and Arcella [29]. In addition, hybrid neural network 
models had been proposed for predicting purified sewage 

water quality [30]. Underwater dense object recognition 
methods, including recognition-by-detection, recognition-
by-regression, and recognition-by-density-generation 
algorithms, offer potential applications in activated sludge 
microorganism detection [31-36]. However, these methods 
primarily rely on direct application of classical deep learning 
algorithms and lack in-depth exploration tailored to sewage 
treatment scenarios. No mature AI-based products for 
detecting water quality indicator microorganisms in 
activated sludge are currently available. The challenges of 
achieving intelligent detection of activated sludge 
microorganisms include the following: 

(1) Existing intelligent detection methods are primarily 
based on pattern recognition or directly use existing deep 
learning models, lacking in-depth research tailored to the 
specific scenarios of activated sludge microorganism 
detection. 

(2) Detection methods for activated sludge 
microorganisms using pattern recognition algorithms require 
manual feature selection to construct the detection model, 
resulting in limited performance and significant deficiencies 
in generalization ability and robustness. 

(3) The backgrounds of activated sludge microorganism 
images are complex and are easily affected by natural 
environmental factors, such as lighting and impurity 
occlusion, as well as human factors during image 
acquisition. Consequently, the appearance and shape of the 
microorganisms are modified. 

(4) Image datasets matched to real-world scenarios for 
performance testing of activated sludge microorganism 
detection methods are limited, thereby hindering research on 
intelligent detection methods for activated sludge 
microorganisms. 

On the basis of the above analysis, an intelligent 
detection method is proposed for activated sludge 
microorganisms using deep learning. The method initially 
involves pre-processing, and then feature extraction. Finally, 
a microbial information analysis module is used to achieve 
intelligent identification of microorganisms from 
micrographs of activated sludge. Simultaneously, we 
construct a dataset comprising 2000 micrographs of 
activated sludge microorganisms to test the performance of 
the proposed method and compare it with other detection 
approaches for activated sludge microorganisms. 

The remainder of this study is organized as follows: 
Section 3 describes the methodology, including the 
construction of the activated sludge microorganism image 
dataset and the intelligent detection method for activated 
sludge microorganisms. Section 4 presents the relevant 
experiments conducted using the microbial image dataset 
and the results analysis. The final section summarizes the 
study and provides the related research conclusions.  
 
 
3. Methodology 
 
This study involves the creation of a micrograph image 
dataset comprising activated sludge microorganisms for 
sewage treatment and the development of an intelligent 
detection method for these microorganisms, termed the 
activated sludge microbial detector (ASMDetector), as 
illustrated in Fig. 1. The intelligent microorganism detection 
method consists of three stages: pre-processing, feature 
extraction, and microbial information analysis. 
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3.1 Construction of activated sludge microorganism 
micrograph image dataset 
A micrograph image dataset of microorganisms was 
constructed using sewage samples. An appropriate volume 

of water samples was collected, as depicted in Fig. 2, and 
micrographs were acquired using an Olympus BX53 optical 
microscope camera, as shown in Fig. 3. 

 

 
Fig. 1. Schematic illustration of the proposed method 

 
Detection personnel annotated micrographs for four 

microorganism types: Epistylis, Nematoda, Lecane, and 
Arcella. The abundance of each microorganism is presented 
in Table 1. Fig. 4 displays partial, zoomed-in images of 
representative microorganisms from the dataset, magnified 
at 40´, 100´, and 200´. 
 

 
Fig. 2. Activated sludge at the end of the sewage aerobic biological 
treatment tank 
 

 
Fig. 3. OLYMPUS BX53 optical microscope 

 
Table 1. Activated sludge microorganism micrograph image 
dataset 
microorganism image quantity microorganism quantity 

Epistylis 500 2718 
Nematoda 500 3009 

Lecane 500 2829 
Arcella 500 3129 

total 2000 11685 
 
3.2 Intelligent detection of activated sludge 
microorganisms 
The ASMDetector, an intelligent detection method for 
activated sludge microorganisms, analyzes micrographs I 
containing microorganisms  to identify four 
distinct species: Epistylis, Nematoda, Lecane, and Arcella. 
As shown in Fig.5, the detection process comprises three 
stages, namely, pre-processing, feature extraction, and 
microbial information analysis. 

(1) Pre-processing Module: The micrographs of 
microorganisms are uniformly divided into blocks with 
specified width and height . The range for 

is [128, ], and the range for is 

[128, ]. Here, Width and Height represent the 
width and height of the micrographs, respectively. 

(2) Feature Extraction Module: This module extracts 
features from the image blocks to obtain feature maps 

(where h, w, and represent the height, width, 
and number of feature channels of the feature map, 
respectively). The feature map F is then input into the 
microbial information analysis module (MIAM). 

(3) Microbial Information Analysis Module (MIAM): 
Based on the features F from the feature extraction module, 
the MIAM generates prediction results (types and locations 
of microorganisms) through the microbial recognition unit 
and the microbial localization unit. 

 
3.3 Microbial information analysis module 
MIAM comprises four key components: the microbial 
information extraction unit (FIEU), a global information 
fusion feature extraction unit, a microbial recognition unit, 
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and a microbial localization unit. The architectural overview 
is depicted in Fig.6. 

(1) FIEU: This unit consists of two multi-layer perceptron 
(MLP) modules, namely, L high-level feature extraction 
modules (HLFEM) and L low-level feature extraction modules 
(LLFEM), where L is a configurable parameter. The specific 
structure and operational process will be detailed in Section 3.4. 

 

 
Fig. 4. Partial zoomed-in images of activated sludge microorganisms 
 

 
Fig. 5. Intelligent detection process of activated sludge microorganisms 
 

 
Fig. 6. Structure of the microbial information analysis module 
 

(2) Global Information Fusion Feature Extraction Unit: 
This unit is responsible for extracting and fusing features from 
the microorganism image blocks. Its architecture comprises L 
layers (configurable and consistent with the FIEU 
configuration), each containing a self-attention module, a cross-
attention layer, and a feed-forward network (FFN). 

(3) Microbial Recognition Unit: Leveraging input 
features, this unit generates predicted microorganism types. 
Its architecture is detailed in Table 2. 
 
Table 2.  Structure of the microbial recognition unit 

layer type 
1 Conv(3, 3, 1, 1)

 

2 Conv(3, 3, 1, 1)
 

3 Conv2d(1x1, 1, 0, Ncls)
 

 
(4) Microbial Localization Unit: This unit predicts the 

locations of microorganisms by using input features. Its 
architectural configuration is presented in Table 3. 
 
Table 3. Structure of the microbial localization unit 

layer type 
1 Conv(3, 3, 1, 1)

 

2 Conv(3, 3, 1, 1)
 

3 Conv2d(1x1, 1, 0, 4xreg_max)
 

   
The MIAM operates as follows: The feature map F 

generated by the feature extraction module, is initially input 
into the FIEU, producing analysis features FL for 
microorganisms. Subsequently, the analysis features FL and 
the micrographs of the activated sludge microorganisms are 
transmitted to the global information fusion feature 
extraction unit. The integrated information is concurrently 
forwarded to the microbial recognition unit and the 
microbial localization unit, yielding predicted microbial 
information, namely, microorganism types and locations. 
The FIEU employs a uniquely designed fine network 
architecture to generate more effective analysis features FL 
for microbial information. These features are subsequently 
mapped to confidence scores via the microbial recognition 
unit and to point coordinates through the microbial 

localization unit. Let  denote the prediction 

results for all queries, where represents the predicted 
confidence of the point belonging to the foreground, and 

 refer to the predicted coordinates of the i-th 
query. Subsequently, a k-nearest neighbor matching process 

is conducted between the prediction results  

and the ground truth. Each microorganism, each 
microorganism  possesses a corresponding 
matched prediction result given that n is greater than NUM. 

The loss function of the microbial information analysis 
module is contingent upon two primary factors: the 
confidence associated with the prediction results and the 
average nearest neighbor distance between the predicted and 
ground truth data. Consequently, the loss function of the 
activated sludge microorganism detection network is 
expressed as follows: 
 

                                    (1) 
 
where  denotes the classification loss, which enhance the 
confidence of matched predictions while suppressing that of 
unmatched predictions. To localization loss , which 
quantifies the distance  also computed, which quantifies 
the distance  between matched predicted coordinates and 
their corresponding ground truth coordinates, is also 
computed to oversee the learning process of the predicted 
coordinates. The classification loss is computed using 
Equation (2), where represents the actual class of the 
microorganism, indicates the predicted class by the 
model, and n is the number of microorganisms. 
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(2) 

 
 The localization loss  employs the intersection over 
union (IoU) loss function to quantify the overlap between 
the predicted bounding box and the corresponding ground 
truth box, thereby evaluating the accuracy of the detected 
box. The IoU value of each predicted box is computed with 
respect to all ground truth boxes, which exhibit the 
maximum IoU designated as its corresponding match. The 
IoU loss is subsequently calculated using Equation (3), as 
follows: 
 

                     (3) 

 
where  represents the Euclidean distance between 
the center points of the predicted bounding box b and the 
ground truth box , c denotes the diagonal length of the 
image, and  is the intersection over union ratio 
between the predicted bounding box b and the ground truth 
box , calculated using Equation (4), as follows: 
 

                               (4) 

 
3.4 Key technology: microbial information extraction 
unit 
The network architecture of the FIEU is depicted in Fig.7. It 
comprises two MLP modules, HLFEM and LLFEM, where 
L is a configurable hyperparameter with a range of 3 to 8 
and a default value of 4. The input to the FIEU includes  the 
feature map F derived from the feature extraction sub-
network. 

The operational process of the FIEU is as follows. 

Initially, an MLP layer maps the feature F to  , 

and another MLP layer maps F to  to align the 

feature channels (c). The input to the first HLFEM module is 

. This process is expressed by the following equation: 
 

          (5) 
 
where  denotes the operation of reshaping the feature 
map by flattening the spatial dimensions, and  
represents the HLFE module. Subsequent HLFE modules 
further refine the features as follows: 
 

         (6) 

 
where refers to the LLFE module. The total 
number of HLFE modules is L, which also signifies the total 
number of times high-level and low-level features are fused. 
Subsequent to Equation (6), the microbial information 
analysis features  are acquired and transmitted 
to the global information fusion feature extraction unit. The 
operational process of the FIEU can be elucidated from the 
perspectives of high-level and low-level information. Prior 
to each HLFE module in Equation (6), the high-level 
features from the preceding HLFE module and the low-level 
features from the LLFE module are integrated. This 
progressive fusion of high-level and low-level features 
augments the feature representation capacity of the module. 

 
Fig. 7.  Network structure of the FIEU (example with L=4) 

 

Table 4. Division of the activated sludge microorganism micrograph image dataset 
number of images microorganism number of microorganisms 

train validation test total train validation test 
350 50 100 Epistylis 4718 3217 510 991 

Nematoda 4009 2826 441 742 
Lecane 3827 2577 371 879 
Arcella 3126 2162 363 601 

total 15680 10782 1685 3213 
 
4. Result analysis and discussion 
 
4.1 Comparison methods 
Six intelligent detection methods employing diverse 
technical approaches were selected as benchmarks for 
evaluating activated sludge microorganism detection 
performance. These approaches include YOLO v3 [31], 
YOLO v5 [32], P2PNet [33], CLTR [34], MPS [35], and 
DSSI-Net [36]. Among these, YOLO v3 and YOLO v5 are 
classified as recognition-by-detection methods, P2PNet and 

CLTR as recognition-by-regression methods, and MPS and 
DSSI-Net as recognition-by-density-generation methods. 
 
4.2 Experimental setup  
In the experiments, the activated sludge microorganism 
image dataset was used for training and testing purposes. 
Initially, the 500 images containing microorganisms were 
randomly partitioned into training, validation, and test sets in 
a 7:1:2 ratio, as outlined in Table 4. Subsequently, data 
augmentation techniques, including horizontal mirroring, 
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random jitter, and horizontal offset, were applied to the 
training set. 

For comparative analysis, YOLO v3, YOLO v5, 
P2PNet, CLTR, MPS, and DSSI-Net were implemented 
using their respective open-source codes and default 
parameters. The training configuration of the proposed 
method is as follows: for the pre-processing module network, 
the width  and height of the image blocks 
were set to 1024 pixels; for the loss function calculation, the 
tuning value NUM-T was set to 50. For MIAM and FEIMD, 
the number of high-level and low-level feature extraction 
modules L was set to 4. During training, each batch 
contained two image blocks (batch size = 2), and the Adam 
optimizer was used with the number of epochs set to 150. 
The hardware platform and software environment used for 
the experiments are shown in Table 5. 
 
Table 5. Hardware and software configuration for the 
experiment 

Hardware Software 
CPU Intel(R) Core i7-8700K Python 3.9.18 

GPU 4 x RTX 2060 12GB Anaconda 3 2023.09.0 
Memory 128 G CUDA 11.0 

/ PyTorch 1.12.1 
 
4.3 Evaluation metrics 
The efficacy of the proposed method relative to comparative 
approaches is evaluated by computing the mean absolute 
error (MAE) and mean squared error (MSE) between 
predicted and ground-truth activated sludge microorganism 
counts derived from image annotations, using Equations (7) 
and (8). A smaller value of these metrics indicates lower 
average counting error of the corresponding method, and 

consequently enhanced performance. y and  represent the 
sets of actual annotations and the predicted microorganism 
counts using the detection methods in the images, 
respectively. MRE presents the number of micrographs of 
activated sludge microorganisms that must  be detected, and 

 and  represent the actual annotated count and the 
predicted microorganism count in the i-th micrograph of 
activated sludge microorganisms, respectively. 
 

                       (7) 

 
 In equation (7), the MAE is also known as the L1 norm 
loss. 
 

                   (8) 

 
In equation (8), the MSE is also known as the L2 norm loss. 
 
4.4 Comparative experiments on different activated 
sludge microorganism detection methods 
We leveraged the experimental setup detailed in Section 4.2 
to compare the performance of various object detection 
methods on activated sludge microorganisms in micrographs. 
These methods included YOLO v3 [31], YOLO v5 [32], 
P2PNet [33], CLTR [34], MPS [35], DSSI-Net [36], and the 
proposed ASMDetector method. The results are presented in 
Table 6 and Fig.8 and 9. Table 6 summarizes the MAE and 
MSE for each method, highlighting the superior 

performance of ASMDetector using the lowest MAE and 
MSE values. Fig.8 and 9 visually represent these errors, with 
the height of the blue rectangles corresponding to the 
respective MAE (Fig.8) and MSE (Fig.9) values for each 
method. 
 
Table 6. Comparative results of activated sludge 
microorganism detection experiments (best results 
highlighted in bold) 

Method Test(all) 
MAE MSE 

YOLO v3 17.37 32.36 
YOLO v5 9.16 16.69 
P2PNet 6.11 12.89 
CLTR 6.51 13.52 
MPS 8.67 14.87 

DSSI-Net 8.44 20.2 
ASMDetecor 5.86 12.43 

 
Fig. 8. Performance comparison of different methods for intelligent 
detection of activated sludge microorganisms (MAE metric) 

 
Fig. 9.  Performance comparison of different methods for intelligent 
detection of activated sludge microorganisms (MSE metric) 

 
Table 6 and Fig. 8 and 9 indicate that the proposed 

method outperforms existing methods ([31]-[36]) in 
detecting four types of microorganisms across the entire test 
set, as evidenced by lower MAE and MSE values. While 
object detection methods, such as YOLO v3 and YOLO v5 
exhibit limited performance with dense target identification 
in complex backgrounds, recognition-by-regression (P2PNet, 
CLTR) and recognition-by-density-generation (MPS, DSSI-
Net) approaches yield better results. However, these methods 
present room for enhancement in network architecture and 
processing pipelines. By contrast, the proposed method 
comprehensively addresses the challenges of activated sludge 
image analysis by incorporating image pre-processing, feature 
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extraction, and in-depth feature exploration, followed by 
microbial information analysis. The comparative experimental 
outcomes validate the efficacy of the proposed method for 
accurate microorganism detection within the complex visual 
context of activated sludge. 
 
4.5 Performance analysis of four types of 
microorganisms 
Table 7 provides a quantitative comparison of the proposed 
method and six alternative approaches for identifying four 
activated sludge microorganisms (Epistylis, Nematoda, 
Lecane, and Arcella). Fig.10-13 present bar charts 

illustrating the performance of each method to facilitate 
visualization of these results. 

Analysis of the MAE and MSE metrics presented in 
Table 7 and Fig.10-13 demonstrates that the proposed 
method outperforms comparative approaches in detecting 
Epistylis, Nematoda, Lecane, and Acella microorganisms. 
These empirical results validate the suitability of the 
proposed method for activated sludge microorganism 
detection in real-world sewage disposal contexts. These 
findings highlight the method’s robust generalization 
capabilities across the four target microorganism types.

 
Table 7. Comparative results of four microorganism detection experiments (best results highlighted in bold) 

Method Test (Epistylis) Test (Nematoda) Test (Lecane) Test (Arcella) 
MAE MSE MAE MSE MAE MSE MAE MSE 

YOLO v3 5.35 9.91 4.01 7.48 4.76 8.87 3.46 7.18 
YOLO v5 2.82 5.14 2.12 3.86 2.51 4.57 1.82 3.36 
P2PNet 1.88 3.97 1.41 2.98 1.67 3.53 1.27 2.64 
CLTR 2.01 4.16 1.52 3.12 1.81 3.71 1.32 2.73 
MPS 2.67 4.58 2.01 3.43 2.38 4.07 1.73 3.02 

DSSI-Net 2.59 6.22 1.95 4.67 2.31 5.48 1.71 4.03 
ASMDetecor 1.81 3.83 1.36 2.87 1.61 3.41 1.19 2.48 

 
Fig. 10. Performance comparison of different methods for intelligent detection of Epistylis 

 
Fig. 11. Performance comparison of different methods for intelligent detection of Nematoda 
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Fig. 12. Performance comparison of different methods for intelligent detection of Lecane 

 
Fig. 13. Performance comparison of different methods for intelligent detection of Arcella 
 

 5. Conclusions 
 
This study proposed an intelligent detection method for 
activated sludge microorganisms based on deep learning. 
Initially, microbial micrographs underwent pre-processing. 
Subsequently, a feature extraction module was used to 
extract microorganism features. Finally, the microbial 
information analysis module acquired microbial information, 
encompassing microorganism type and location. To facilitate 
this study, we constructed an activated sludge 
microorganism image dataset, meticulously annotated by 
professional microorganism detection personnel for 
Epistylis, Nematoda, Lecane, and Arcella. Through a 
comparative analysis of detection results for different 
microorganism types, we arrived at the following 
conclusions: 

(1) For the task of microorganism detection in activated 
sludge images from sewage disposal, deep learning methods, 
with their capacity for automatic image feature discovery, 
significantly surpass traditional image recognition methods. 

(2) Among deep learning methods, recognition-by-
density-generation and recognition-by-regression approaches 
exhibit a performance superior to recognition-by-detection 
methods. This superiority is evidenced by a reduction in 
MAE and MSE metrics from 4.26 to 19.93 and 3.3 to 11.51, 
respectively, in experimental results. 

(3) When applying either recognition-by-regression or 
recognition-by-density-generation methods to activated 

sludge microorganism detection, factors, such as network 
architecture, loss functions, and model training strategies 
significantly influence actual detection performance. By 
effectively optimizing these factors, our proposed method 
reduced MAE and MSE metrics by 2.58 to 2.81 and 2.44 to 
7.77, respectively, compared with comparative methods. 

(4) To effectively evaluate the performance of detection 
methods, the image dataset employed for training and testing 
intelligent detection methods for activated sludge 
microorganisms should accurately reflect the actual 
characteristics of activated sludge microorganism images. In 
addition, diverse types of activated sludge microorganisms 
must be incorporated to assess the generalization capability 
of detection methods across different microorganism species. 

The proposed method successfully achieves intelligent 
detection of four activated sludge microorganism types: 
Epistylis, Nematoda, Lecane, and Arcella. The proposed 
method outperforms five existing comparative methods with 
MAE and MSE metrics of 5.86 and 12.43, respectively, on 
the test set. This advancement contributes to enhancing the 
intelligence level of activated sludge microorganism 
detection and effectively improves the efficiency of water 
quality monitoring within the sewage disposal process. 
Nevertheless, further refinements are necessary. 
Specifically, expanding the image dataset to encompass a 
broader range of activated sludge microorganisms is crucial 
for achieving intelligent detection of a wider array of 
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microorganisms and for augmenting the generalization 
capability of the detection method. 
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