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Abstract 
 

In traditional short-term load dispatching methods for distributed power systems, complex data processing, and low 
recognition accuracy hinder effective system optimization. To address this issue, an intelligent short-term load 
dispatching method for distributed power systems based on deep learning was proposed, aiming to improve voltage 
quality and reduce network losses. The proposed method first collected historical load data from the system, including 
active power and reactive power, and utilized a long short-term memory neural network (LSTM) for short-term load 
forecasting. In the forecasting process, the input gate, output gate, and forget gate operations were employed to accurately 
handle load variations. Based on the forecasting results, a short-term load dispatching model was constructed to minimize 
network losses, voltage deviations, and power abandonment rates, while incorporating constraints such as power flow, 
node voltage, and load regulation coefficients. The bee colony Quantum-behaved Particle Swarm Optimization (QPSO) 
algorithm was used to achieve intelligent load allocation in the distributed power system. Experimental results show that, 
the proposed method effectively controls voltage fluctuations within ±0.4 p.u. while reducing network losses to below 
0.14 MW, significantly improving the overall system performance. The conclusion provides scientific technical supports 
for the optimization and dispatching of distributed power systems and validates the applicability and effectiveness of 
intelligent methods in complex power system scenarios. 
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1. Introduction 
 
The continuous development of the global economy and 
increase in population, as well as the rapid growth in power 
demand pose unprecedented challenges to the stable 
operation and efficient dispatch of the power system [1]. 
Especially today, when distributed energy sources (such as 
solar energy, wind energy, and other renewable energy 
sources) are connected in large quantities, the load 
fluctuation and uncertainty of the power system have 
increased significantly [2]. Short-term load forecasting is an 
important component of power system dispatching, and its 
accuracy is directly related to the stability, economy, and 
security of the power supply [3]. However, traditional load 
forecasting methods often rely on time series analysis of 
historical data or simple statistical models, which cannot 
accurately capture the nonlinear, dynamic, and random 
characteristics of power loads, especially during extreme 
weather and emergencies. Their prediction effect is often 
greatly compromised when uncertain factors are involved [4]. 
Therefore, the effective use of big data and artificial 
intelligence technology to achieve intelligent and accurate 
prediction and dispatch of short-term load in the power 
system has become an important practical issue that requires 
urgent solutions. 

Although scholars have conducted considerable research 
in the field of power load forecasting and intelligent 
dispatching in recent years and achieved certain results, 
many shortcomings still exist. On the one hand, traditional 
load forecasting methods are often based on statistical 

models or machine learning algorithms. These methods are 
inadequate when processing large-scale, high-dimensional, 
and nonlinear power load data, and cannot capture the 
inherent laws and dynamic characteristics of load changes. 
On the other hand, most existing intelligent dispatching 
systems rely on expert rules or heuristic algorithms, which 
lack sufficient flexibility and adaptive capabilities to cope 
with emergencies and dispatching requirements under 
complex working conditions. The wide application of 
distributed power systems has also introduced stringent 
requirements for the coordination and real-time performance 
of intelligent dispatching systems, but the gap in existing 
systems is still substantial. 

To address these problems, a short-term load intelligent 
dispatching method for distributed power systems based on 
deep learning is assessed. This method uses long-short-term 
memory neural network to perform short-term load 
forecasting of distributed power systems. It combines 
intelligent dispatching algorithms to formulate optimal 
dispatching strategies to achieve efficient dispatching of 
distributed power sources in distributed power systems and 
to ensure the supply and demand of the power system, 
achieving balanced and stable operations. This approach is 
expected to promote further development of distributed 
power systems, strongly guarantee safe and stable power 
system operation, and provide a set of scientific, efficient, 
and intelligent solutions for short-term load forecasting and 
dispatching of distributed power systems. 

 
 

2. State of art 
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For the scheduling problem of random factors, such as the 
output fluctuation of renewable energy in the power system, 
Yamujala et al. investigated a random multi-interval 
scheduling framework for quantifying the operational 
flexibility of low-carbon power systems [5]. This framework 
can quantify the flexibility requirements of power systems at 
different time scales and spatial distributions and provide a 
basis for the optimal configuration of flexible resources in 
these systems. This method considers random factors, such 
as the output fluctuation of renewable energy in the power 
system, achieving a scheduling decision that is aligned with 
the actual situation [6]. However, this framework mainly 
quantifies and optimizes the operational flexibility of low-
carbon power systems. It has certain limitations for 
optimization of other types of power systems or under 
different objectives. 

For the scheduling problem of load demand in power 
systems, Krishnan et al. assessed the economic load 
scheduling method for integrating renewable energy in 
microgrids [7]. This approach fully utilized wind energy and 
water resources, realized the effective integration of 
renewable energy, reduced carbon emissions, and complied 
with the concept of environmental protection and sustainable 
development. The wind-driven hydropower generation 
system can flexibly adjust the energy production according 
to the wind speed and water wave conditions to satisfy the 
load requirement of the power system, thereby reducing the 
operating cost. However, the wind-driven hydropower 
generation system is greatly affected by environmental 
factors, such as wind speed, wind direction, water wave 
height, and frequency. Changes in these factors lead to 
fluctuations in power generation, affecting the stability of 
the power system. 

In response to various complex power system load 
forecasting and economic dispatch problems, Kalakova et al. 
studied a dynamic economic dispatch method for short-term 
load forecasting using genetic algorithms [8]. The dynamic 
economic dispatch method adjusts the unit output according 
to the real-time changes in load over multiple consecutive 
periods to minimize the operating cost of the entire system 
and adapt to various complex power system load forecasting 
and economic dispatch problems. However, inappropriate 
parameter settings of the genetic algorithm cause the 
algorithm to fail to achieve an optimal solution or converge 
inefficiently. 

To address the scheduling problem of maintaining the 
stable operation of microgrids under conditions, such as 
insufficient energy supply or equipment failure, Ishraque et 
al. studied the load dispatch strategy optimization method of 
isolated microgrids connected to renewable energy [9]. 
Isolated microgrids can fully integrate and utilize renewable 
energy, such as solar energy and wind energy, and build a 
green and low-carbon energy structure by optimizing load 
dispatch strategies. Isolated microgrids use distributed 
generation and energy storage technology, with the 
characteristics of multiple backups and redundancy, thereby 
improving the reliability and stability of power supply [10]. 
This method can ensure the stable operation of microgrids 
under conditions, such as insufficient energy supply or 
equipment failure. The power generation and consumption 
plans can be arranged more reasonably, unnecessary energy 
waste can be reduced, and the operating cost can be 
minimized by optimizing the load scheduling strategy. 
However, the load scheduling optimization of the isolated 
microgrid must consider the volatility and uncertainty of 
renewable energy, as well as the power balance and stability 

issues within the microgrid [11]. Although the isolated 
microgrid can operate independently, it may require external 
support and assistance in the case of insufficient energy 
supply and equipment failure, increasing the operating risk 
and uncertainty of the isolated microgrid. 

Nourianfar and Abdi used an enhanced multi-objective 
exchange market algorithm to optimize the use of resources 
through coordinated scheduling, considering the economic 
emission scheduling of electric vehicles and wind power 
[12]. The algorithm takes into account the economy and 
emissions of electric vehicles and wind power. Schedule 
optimization reduces the operating cost of the system as well 
as greenhouse gas emissions, which is conducive to 
achieving a green and low-carbon energy structure [13]. The 
algorithm can fully apply the complementarity of electric 
vehicles and wind power, optimize resource utilization 
through coordinated scheduling, and improve the operating 
efficiency of the system [14]. However, the algorithm must 
consider the charging requirements of electric vehicles, wind 
power output forecasts, and electricity prices. It is greatly 
affected by electricity price fluctuations and policy changes 
in the market environment [15]. The unstable market 
environment or frequent policy adjustments influence the 
application effect and stability of the algorithm.  

In summary, the research on short-term intelligent 
dispatching of distributed power systems has made 
significant progress. Various methods, such as random 
multi-interval dispatching, economic load dispatching [16], 
dynamic economic dispatching of short-term load 
forecasting based on genetic algorithms [17], load allocation 
of isolated microgrids connected to renewable energy 
sources [18], and scheduling of enhanced multi-objective 
exchange market algorithms have been applied in practice. 
These methods have their advantages, but they also face the 
following challenges: optimization for other types of power 
systems or under different objectives; failure to determine 
the optimal solution or slow convergence; external support 
and assistance may be required in cases of insufficient 
energy supply and equipment failure, increasing the 
operational risk and uncertainty of isolated microgrids; 
problems that are greatly affected by electricity price 
fluctuations and policy changes in the market environment 
still require further exploration. 

 
 

3. Methodology  
 

3.1 Distributed power system short-term load forecasting 
based on deep learning 
 
3.1.1 Long short-term memory (LSTM) neural network 
for distributed power system load forecasting 
LSTM neural network is a commonly used approach in deep 
learning algorithms. It is suitable for predicting short-term 
loads of distributed power systems with long intervals and 
delays. The neuron signals of traditional feed forward neural 
networks can only flow in one direction and independently 
process the time series of distributed power system loads. 
The time series information of distributed power system 
loads can easily be lost during calculations. Compared with 
traditional neural networks, recurrent neural networks are 
equipped with memory units, which apply the hidden layer 
information of the previous moment to the output of the 
current layer. Recurrent neural networks adopt a chain 
structure and possess memory characteristics. They are 
suitable for processing load forecasting problems related to 
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time series. When using LSTM neural networks to predict 
short-term loads of distributed power systems, the 
calculation formula of input gate  is as follows: 
 

                              (1) 
 

When the LSTM neural network predicts the short-term 
load of the distributed power system, the calculation formula 
of the output gate  is as follows: 
 

        (2) 
 
When the LSTM neural network predicts the short-term 

load of the distributed power system, the calculation formula 
of the forget gate  is as follows: 
 

        (3) 
 
In formula (3),  and  represent the weights and 

biases corresponding to each layer of the network, 
respectively.  and refer to the incoming 
information at time and the input information of the 
current layer at time ;  denotes the activation function. 

According to the values of  and , when the 
calculation time is , he candidate state value of the neuron, 
when the LSTM neural network predicts the short-term load 
of the distributed power system, is expressed as follows: 
 

        (4) 
 
The state value  and the candidate state value  of 

the LSTM neural network at the previous moment are 
determined using the values of  and . Their proportion 

in the state update result  is expressed as follows: 
 

        (5) 
 
The short-term load forecasting result of the distributed 

power system using the LSTM neural network at time  is 
expressed as follows: 
 

              (6) 
 
This approach is applied to construct a LSTM neural 

network for short-term load forecasting in distributed power 
systems. 

 
3.1.2 Short-Term Load Forecasting of Distributed Power 
Systems Using Long Short-Term Memory (LSTM) 
Neural Networks  
To address the problem of short-term load forecasting of 
distributed power systems, time information corresponding 
to the active power, reactive power, voltage, current, and 
load data of the corresponding substations of the distributed 
power system is collected, fully considering the 
characteristics of distributed power systems. Moreover, 
short-term load forecasting of the distributed power system 
is carried out using the constructed LSTM neural network. 

The short-term load forecasting of distributed power systems 
mainly includes four components: abnormal data detection, 
data analysis, feature engineering, and load forecasting. 
Each element is introduced as follows: 

(1) Anomaly Detection in Short-Term Load Forecasting. 
Input data, such as active power and reactive power, of the 
distributed power system load forecasting are analyzed, and 
abnormal data are deleted. According to the outlier data 
judgment principle of the box plot, the judgment criteria for 
abnormal data of the distributed power system short-term 
load forecasting are set as follows: 
 

                           (7) 

 
where  and  represent the first and third quartiles 

of the LSTM neural network input data, respectively;  and 
 refer to the interquartile range and abnormal data, 

respectively. 
Formula (7) is used to detect whether the data input to 

the LSTM neural network for short-term load forecasting of 
distributed power systems contains abnormal data. Moreover, 
the detected abnormal data are deleted. 

(2) Analysis of the data distribution of short-term load of 
distributed power systems. A power diagram based on the 
active power of the distributed power system is developed to 
determine the time nodes of the peak load period of the 
distributed power system. 

(3) Feature engineering. The original data of the 
distributed power system, which has completed abnormal 
data detection, are converted into training data for the LSTM 
neural network. The hidden information in the original input 
data is extracted to mine the feature information that is 
important for short-term load forecasting. The time 
characteristics of the distributed power system load are 
extracted from the input data to determine the specific time 
corresponding to the load data, whether it belongs to the 
working day or the peak load. The input data are encoded 
using the one-hot vector encoding rule. In the actual 
application scenario of the distributed power system, the 
extracted features are fused according to fixed rules. 
Considering the physical definition of the electrical 
parameters of the distributed power system [19], the active 
power, reactive power, voltage, and current data of the 
power system are fused. 

(4) Load forecasting. The feature engineering processing 
results are used as input of the LSTM neural network 
constructed in Section 3.1.1, whereas the short-term load 
forecasting results of the distributed power system are the 
output. The real-time short-term load forecasting results of 
the power system are used as the data basis for intelligent 
dispatching of the short-term load of the distributed power 
system. 

 
3.2 Distributed power system short-term load intelligent 
dispatching model 
 
3.2.1 Objective function 
Intelligent scheduling of distributed power system short-
term loads is carried out using the short-term load forecast 
results of distributed power systems, fully considering the 
time-varying characteristics of distributed power sources and 
short-term loads in distributed power systems. The minimum 
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network loss, voltage deviation, and power abandonment 
rate are selected as the objective functions of the distributed 
power system short-term load intelligent scheduling model, 
and a distributed power system short-term load intelligent 
scheduling model is constructed. Each component is 
introduced as follows: 

(1) Minimum network loss. The active power loss of the 
power system line is minimized, and the power purchase 
cost of the power company to which the distributed power 
system belongs is reduced, thereby satisfying the load 
demand of the distributed power system. The useful life of 
the power system equipment is reduced when the 
interconnecting switches of the distributed power system are 
frequently operated [20]. Therefore, when the distributed 
power system is in operation, the number of operations of 
the interconnecting switches must be limited. The objective 
function for minimizing the network loss of the distributed 
power system within a fixed period is expressed as follows: 
 

       (8) 
 
In formula (8),  and  represent the active load 

consumed by the power system and the number of times the 
tie switch is operated, respectively.  and  represent 
the unit price of active power and the cost required for one 
tie switch operation, respectively. 

(2) Minimum voltage deviation. A fixed period is set, 
and the objective function for the minimum voltage 
deviation of the distributed power system is expressed as 
follows: 
 

         (9) 
 
In formula (9),  and  represent the maximum 

voltage deviation value of all nodes in the distributed power 
system and the minimum voltage stability value of all 
branches, respectively; they are expressed as follows: 
 

     (10) 
 
where  and  indicate the rated voltage and actual 

voltage amplitude of node , respectively. 
 

 (11) 
 
where  and  refer to the active power and reactive 

power flowing through the power system branch , 

respectively.  and  denote the resistance and 
reactance values of the power system branch , respectively. 

 represents the voltage amplitude across branch . 
(3) Minimum power abandonment rate. When the 

distributed power system is in operation, the maximum 
power output of the distributed power generation equipment, 
such as wind power and photovoltaic power, at a fixed time 
is affected by the size of the solar energy and wind energy in 
that period. The optimal output power of the distributed 
power sources is related to the structure of the distributed 
power system and the load distribution. The minimum power 
abandonment rate  of the distributed power system is set 

as another objective function to improve the economic 
benefits of distributed power sources in the distributed 
power system and the ability of the distribution network to 
absorb renewable energy. Under the premise of safe and 
stable operation of the distributed power system, a lower 
power abandonment rate indicates higher power 
transmission and distribution efficiency. 

Combining these objective functions, the short-term load 
intelligent scheduling model of the distributed power system 
is constructed as follows: 
 

     (12) 
 

3.2.2 Constraints 
To ensure that short-term load intelligent dispatching can 
effectively satisfy the actual operation requirements of 
distributed power systems, the following constraints are set 
for the short-term load intelligent dispatching of distributed 
power systems: 

(1) Flow constraints 
 

   (13) 

 

    (14) 

 
where  and  refer to the active power and 

reactive power of wind power generation equipment , 
respectively.  and  represent the active power and 
reactive power of photovoltaic power generation equipment 

, respectively.  and  indicate the active power and 
reactive power of thermal power generation equipment , 
respectively.  and  denote the active load and 

reactive load of node , respectively.  and  represent 
the load regulation coefficient and the voltage of node , 
respectively.  and  indicate the conductance and 

susceptance of branch , respectively.  refers to the 
voltage phase difference between node  and node . 

(2) Node voltage constraints. The node voltage 
constraints are set as follows: 
 

     (15) 
 
In formula (15),  and  represent the upper and 

lower limits of the node voltage, respectively. 
(3) Branch power constraint 

 
      (16) 

 
where  and  indicate the actual power and 

power upper limit of branch , respectively. 
(4) Load regulation coefficient constraint 

 
     (17) 
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where  and  represent the maximum and 

minimum values of the load regulation coefficient, 
respectively. 

 
3.3 Solution of short-term load intelligent dispatch model 
using swarm QPSO algorithm 
The swarm QPSO algorithm is selected to solve the 
constructed distributed power system load intelligent 
dispatch model. This method introduces quantum behavior 
into the particle evolution population of the particle swarm 
optimization algorithm. Each distributed power system load 
intelligent dispatch scheme is considered a particle, and the 
Monte Carlo method is used to express the particle position 
as follows: 
 

   (18) 

 
In formula (18),  and  represent the random 

constants in the interval [0,1] and the number of iterations, 
respectively.  and  indicate the current optimal 
position of the particle and the contraction factor, 
respectively. 

The particle evolution equation of the QPSO algorithm is 
expressed as follows: 
 

  (19) 

 
          (20) 

 

               (21) 

 
In formulas (19)-(21),  and  represent the weight 

and the total number of particles, respectively.  and 

 refer to the optimal position of the particle after the 
 iteration and the global optimal position of the particle, 

respectively. 
The swarm search strategy is used to improve the QPSO 

algorithm and efficiently solve the distributed power system 
load intelligent dispatching model. The swarm is unaffected 
by the environment and searches for food locations by 
smelling the food, such as nectar, with high sensitivity. The 
swarm search strategy regards the particles representing the 
distributed power system load intelligent dispatching scheme 
as swarms in quantum space. It divides the peak groups into 
leading bees, following peaks, and reconnaissance peaks 
based on fixed probabilities. The swarm search strategy uses 
reconnaissance peaks to explore and exploit food sources, 
avoids falling into local optimality during the swarm search, 
and enhances the swarm’s global search capability. The 
swarm search strategy sets the particle position  as the 
pollen source, and the pollen source update formula is as 
follows: 
 

   (22) 
 

where  is a random constant in the interval [0,1], and 
 and  represent the optimal particle value and the 

worst particle value, respectively. 
Adaptive learning factors are used to improve the global 

search capability of the bee colony QPSO algorithm when 
solving the distributed power system load intelligent 
dispatching model. Quantum behavior has the characteristics 
of parallelism and superposition, which can process a large 
amount of data in a short time and identify the optimal 
solution of the distributed power system load intelligent 
dispatching model. The QPSO algorithm is further improved 
using the bee colony search strategy, further enhancing the 
convergence speed of solving the distributed power system 
load intelligent dispatching model. When the QPSO 
algorithm solves the distributed power system load 
intelligent dispatching model, it has a wider search range 
and the optimal solution obtained is aligned with the actual 
requirements of the distributed power system application 
scenario. 

 
 

4. Experimental results and analysis 
 
The method is applied to a distributed power system of 
IEEE32 nodes, in which distributed power sources, such as 
photovoltaic and wind power, are connected to verify the 
effectiveness of the studied method for intelligent 
dispatching of short-term loads in distributed power systems. 
The structural diagram of the distributed power system is 
shown in Fig. 1. 

 
Fig. 1. Structural diagram of the distributed power system 
 

The voltage of the node connected to the upper power 
grid after normalization is 1∠0°. The parameter settings of 
the distributed power generation in the distributed power 
system are shown in Table 1. 
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Table 1. Distributed Power Source Parameter Settings 
Name Install nodes Equipment type Equipment capacity 

/kVA Power factor  

Distributed power supply 23 Photovoltaic 600 0.92 
Distributed power supply 24 Photovoltaic 600 0.92 
Distributed power supply 25 Photovoltaic 600 0.92 
Distributed power supply 26 Wind power 500 0.92 
Distributed power supply 27 Wind power 400 0.92 
Distributed power supply 28 Wind power 500 0.92 
Distributed power supply 31 Wind power 500 0.92 
Distributed power supply 32 Controllable distributed power supply 500 0.92 
Distributed power supply 33 Controllable distributed power supply 500 0.92 
 
 

The proposed method is used to detect whether the input 
data used for distributed power system load forecasting 
includes abnormal data. The detection results of abnormal 
data in different types of input data, such as active power 
and reactive power, are shown in Fig. 2. 

 

 
Fig. 2. Abnormal Input Data Detection Results 

 
The experimental results in Fig. 2 are analyzed, 

suggesting that the proposed method can effectively detect 
abnormal data from input data of distributed power system 
load forecasting. These abnormal data show evident outlier 
characteristics. The outlier data in the input data are set as 
abnormal data. Then, the abnormal input data of the detected 
distributed power system load forecasting are deleted to 
provide high-quality input data for the LSTM neural 
network to predict the short-term load of the distributed 
power system. 

The proposed method adopts the bee colony search 
strategy to improve the QPSO algorithm for solving the 
intelligent dispatching model of the short-term load of the 
distributed power system. The particle swarm algorithm and 
the QPSO algorithm are selected for comparison with the 
proposed method. Moreover, the global search capabilities 
of different methods when solving the intelligent dispatching 
model are statistically analyzed. The statistical results are 
shown in Fig. 3. 

“1” in Fig. 3 indicates the optimal pollen source, that is, 
the optimal solution of the distributed power system short-
term load intelligent dispatching model. The experimental 
results in Fig. 3 illustrate that the proposed method uses the 
bee colony search strategy to improve the QPSO algorithm, 
and the search area is significantly larger than those of the 
two other algorithms. The proposed method can search for 
the optimal solution of the distributed power system short-
term load intelligent dispatching model in a wider range. It 
can also improve the solution level of the distributed power 

system short-term load intelligent dispatching model through 
a higher global search capability. 

 

 
Fig. 3. Comparison of search areas using different methods 

 
The proposed approach uses the LSTM neural network 

to predict the short-term load changes in the distributed 
power system. The load forecast results of the distributed 
power system within 24 hours are shown in Fig. 4. 

The experimental results in Fig. 4 suggest that the 
proposed method can effectively predict the short-term load 
changes of the distributed power systems. The LSTM neural 
network shows excellent performance when processing data 
with long-term dependencies. The load data of the power 
system exhibit characteristics of a time series, that is, a 
dependency exists between the load values at different time 
points. The LSTM neural network can capture the long-term 
dependency in this time series through its unique gating 
mechanism, thereby accurately predicting the short-term 
load of the power system. The LSTM neural network is 
trained using the preprocessed data and selected features, 
and the network parameters are adjusted through the back 
propagation algorithm, which can accurately predict the 
short-term load of the distributed power system. 

The distributed power system is intelligently dispatched 
using the proposed method, and the output scheme of some 
units obtained is shown in Table 2. 
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Fig. 4. 24-hour load forecasting results of distributed power system 
 
Table 2. Partial Unit Output Schemes for Distributed Power 
Systems 

Time Unit 1 
/MW 

Unit 2 
/MW 

Unit 3 
/MW 

Unit 4 
/MW 

Network loss 
/MW 

8:00-8:59 140 125 158 120.5 15.8 
9:00-9:59 140 125 164 130 23.5 

10:00-10:59 165 136 138 130 17.5 
11:00-11:59 235.1 158 154 130 13.5 
12:00-12:59 185.4 176 188.5 115.4 18.5 
13:00-13:59 177.5 216 174.5 152.5 34.5 
14:00-14:59 205.6 315 166.5 134.5 28.4 
15:00-15:59 187.5 241.5 159.1 134.5 16.5 
16:00-16:59 168.5 264 150 108.5 21.5 
17:00-17:59 155 125 145 95.7 23.5 
 

The experimental results in Table 2 demonstrate that the 
intelligent dispatching of distributed power systems can be 
realized by adopting the proposed method in this paper. 
According to the intelligent dispatching results of distributed 
power systems by the proposed method, the changes in the 
transferable load and the load that can be reduced in the 
distributed power system before and after the intelligent 
dispatching are statistically analyzed, as shown in Figures 5 
and 6, respectively. 

 
Fig. 5. Transferable load changes 
 

The experimental results in Figures 5 and 6 indicate that 
after the distributed power system is intelligently dispatched 
by the proposed method, the transferable load of the power 
system is more evenly distributed. The proposed method 
transfers the load from the high electricity price period 

during peak consumption intervals to the low electricity 
price period. During high electricity price periods, the 
reducible load is decreased, whereas that in the low 
electricity price period is retained. The experimental results 
show that the proposed method demonstrates the flexibility 
of the intelligent dispatch for short-term load management in 
distributed power systems. The intelligent dispatch of 
controllable loads improves the operating reliability and 
economic efficiency of the distributed power system. 
 

 
Fig. 6. Reduced load changes 

 
The short-term load of the distributed power system is 

intelligently dispatched by the proposed method. The daily 
load change curve of the distributed power system, as 
compared with the case where the proposed method is not 
used, is shown in Fig. 7. 

 

 
Fig. 7. Daily load variation curve of the distributed power system 
 

The experimental results in Fig. 7 illustrate that the 
distributed power system is intelligently dispatched by the 
proposed method, and the daily load fluctuation of the 
distributed power system is significantly reduced compared 
with the case where the proposed method is not used. The 
experimental results in Fig. 7 show that the short-term load 
of the distributed power system is intelligently dispatched by 
the proposed method. As a result, the load characteristics of 
the distributed power system and the power characteristics 
of new energy efficiently match, flexible adjustment of the 
load is realized, and the operational stability of the 
distributed power system is improved. 
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Statistics show that the network loss, voltage index, and 
power abandonment rate of the power system changed from 
November 1 to 3, 2021, and the statistical results are shown 
in Figures 8, 9, and 10. 

 

 
Fig. 8. Changes in grid losses in the distributed power systems 
 

 
Fig. 9. Voltage variation in the distributed power system 
 

A comprehensive analysis of the experimental results in 
Figures 8–10 indicates that using the proposed method for 
intelligent dispatch of the distributed power system, based 
on the short-term load forecast results, and remarkably 
optimized the network loss of the system. All network losses 
are less than 0.14 MW. The proposed method considers the 
short-term load changes of the distributed power system and 
effectively reduces the system network loss. The voltage 
fluctuation of the distributed power system is maintained 
within ±0.4 p.u. after using the proposed method for 
intelligent dispatching of the distributed power system. This 
finding verifies that the method effectively improves the 
operation quality of the distributed power system. The power 
curtailment rate is used to measure the gap between the 
power generated in the system and the actual power used or 
stored. The level of power curtailment rate directly affects 
the economic and environmental benefits of the system. The 
experimental results in Fig. 10 suggest that the proposed 
method can reduce the power curtailment rate of the 
distributed power system, which remains less than 3% at 
different dates. The method improves the accuracy of supply 
and demand forecasting in distributed power systems, 

rationally schedules power generation and consumption, and 
reduces the mismatch between supply and demand. 
Experimental results verify that this method can realize 
intelligent dispatching of distributed power systems, 
improve the voltage quality of distributed power systems, 
reduce network loss changes during the operation of 
distributed power systems, and ensure safe and reliable 
operation of the power system. 

 
Fig. 10. Abandonment rate of the distributed power system 

 
 

5. Conclusion 
 
This study proposes an intelligent short-term load 
dispatching method for distributed power systems based on 
deep learning. This method utilizes LSTM neural networks 
for short-term load forecasting and integrates advanced 
dispatching algorithms to create an optimization model that 
effectively enhances the operational quality and efficiency of 
distributed power systems.  

(1) This study employs the unique gating mechanism of 
LSTM neural networks to achieve effective short-term load 
forecasting for distributed power systems. Experimental 
results demonstrate that this method accurately captures the 
dynamic characteristics of load variations, providing a 
reliable data foundation for intelligent dispatching.  

(2) By developing an intelligent dispatching model with 
objective functions aimed at minimizing network losses, 
voltage deviations, and electricity curtailment rates, and 
integrating it with the QPSO algorithm inspired by bee 
colony behavior, this study accomplishes intelligent short-
term load dispatching for distributed power systems. 
Experimental results show that this method can significantly 
reduce system network losses while ensuring voltage 
stability, thereby validating both the model's effectiveness 
and the algorithm's superiority.  

(3) Adopting the method proposed in this study greatly 
enhances the operational quality and economic benefits of 
distributed power systems. This approach not only facilitates 
efficient alignment between load and renewable energy 
generation characteristics but also improves operational 
stability and safety through flexible load adjustment 
strategies.  

Despite the study’s accomplishments, some limitations 
remain. For instance, while various constraints were 
considered during model construction, not all potential 
complex scenarios were comprehensively covered. 
Additionally, concerning algorithm implementation, the 
QPSO algorithm inspired by bee colonies shows good 
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performance, but its parameter settings and convergence 
characteristics still require further optimization.  

Future research will expand the model's applicable scope 
by considering more constraint conditions in complex 
scenarios, thereby improving accuracy and practicality. 
Simultaneously, more advanced optimization algorithms will 
be explored to further enhance the efficiency and 
effectiveness of intelligent dispatching. Moreover, attention 
will focus on the uncertainty issues of renewable energy 
generation in distributed power systems and how to 

effectively manage these uncertainties through intelligent 
dispatching strategies for more reliable and efficient power 
system operation. 

 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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