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Abstract 
 

The increasing utilization of video text has made text detection and tracking in videos an important research direction in 
the field of computer vision. To address the issue of existing methods being inaccurate at detecting curved text, an 
adaptive video text tracking (ATDTF) model based on pixel-level feature extraction was proposed. First, pixel-level 
information was used for text detection, and then multi-directional prediction and connected component analysis were 
performed to achieve the accurate detection of text in complex scenes. Next, the tracking algorithm was used to associate 
and track text targets in consecutive frames. Finally, the target motion model or appearance model, in combination with 
Kalman filtering, was used to associate and predict the trajectory to achieve accurate tracking of the target. Experimental 
results show that, the ATDTF model improves the F1 value by 0.6% over the current method, the detection speed is at 
least 21 frames per second faster, and the running speed is increased twofold. The proposed model achieves performance 
improvement in video text detection and tracking tasks, providing an effective end-to-end solution for video text 
information processing. 
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1. Introduction 
 
Video text refers to text embedded in video frames, usually 
containing rich semantic information such as logos, 
announcements, advertisements, and subtitles. Video text is 
widely used in fields such as autonomous driving and 
intelligent monitoring. It helps users better understand video 
content by providing contextual information or additional 
explanations, making it valuable for certain applications. 
However, due to the diverse and dynamic nature of video 
text, traditional text detection and tracking methods often 
struggle to achieve ideal results. 

Video text detection and tracking tasks mainly include 
detection and tracking. The goal of detection is to accurately 
identify the text area in the video frame, while that of 
tracking is to associate the above text areas across frames to 
achieve continuous tracking of video text. Existing methods 
usually adopt complex processes, but they fail to fully 
capture the semantic connections between consecutive video 
frames and ignore the real-time requirements of video text 
tracking [1]. In detection, methods based on deep learning 
have made significant progress in recent years. For example, 
the pixel-based scene text detector (PSENet) [2] is an 
advanced text detection algorithm that detects pixel-level 
information and can handle complex scenes with high 
accuracy. In tracking, the multiple objects tracking re-
identification (MOTR) algorithm achieves accurate tracking 
of multiple targets by leveraging target re-identification 
technology. 

Although the above methods perform well in their 
respective fields, in video text detection and tracking tasks, 
using detection or tracking methods alone often does not 
achieve the best results. To solve this problem, this study 

proposes an adaptive video text tracking (ATDTF) model 
based on pixel-level feature extraction. This model uses the 
PSENet algorithm to perform efficient text detection and the 
MOTR algorithm to achieve continuous tracking of detected 
text targets, thereby improving the real-time effectiveness of 
video text information processing. 

 
 

2. State of art 
 
Text detection and tracking is an important research 
direction in the field of computer vision, with applications 
spanning scene understanding, autonomous driving, 
augmented reality, intelligent monitoring, and many more. 
Existing studies mainly focused on text detection and 
tracking in static image, these involving edge detection, 
feature extraction, and classification methods [3]. For 
example, traditional edge detection methods identify text 
edges by detecting the mutation area of grayscale value in 
the image, and feature extraction describes the shape and 
structure of the text area by extracting local features, finally 
classifying the text area using classifiers such as support 
vector machine [4]. However, static image-based methods 
have many limitations in dealing with the continuity and 
dynamic changes of text in videos. 

Video text usually moves, deforms, or becomes partially 
occluded as video frames change, posing challenges for 
traditional static image processing methods [5]. To 
overcome these issues, researchers have begun to explore 
video text detection and tracking methods based on deep 
learning in recent years. Text detection methods based on 
deep learning design deep convolutional networks to learn 
more robust feature representations from large volumes of 
annotated data, enabling them to cope with text detection 
tasks in complex scenes [6]. Among them, the efficient and 
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accurate scene text (EAST) detector is a text detection 
method based on deep learning. It directly predicts the 
bounding box and score of the text area through a fully 
convolutional network, thereby achieving efficient text 
detection [7]. However, it still has certain limitations when 
dealing with dynamic text detection tasks in videos. 

In response to the challenges of video text detection, 
researchers have proposed methods that combine temporal 
information. Recurrent neural networks (RNNs) and long 
short-term memory (LSTM) networks are applied to video 
text detection tasks owing to their superior performance in 
processing time series data. Eshwarappa et al. proposed a 
text detection method based on LSTM, which can better 
capture text changes between video frames by combining the 
temporal information of consecutive frames [8]. However, 
these methods still face certain challenges when dealing with 
significant changes between video frames, such as fast 
motion, severe deformation, and so forth. To further improve 
the performance of video text detection and tracking, recent 
studies have begun to explore multi-task learning and end-
to-end training methods [9]. Although these methods have 
performed well in experiments, they still need further 
optimization in practical applications due to the complexity 
and diversity of video scenes. 

Target association and trajectory prediction are key 
technologies to solve the problem of continuous video text 
tracking [10]. Target association identifies different video 
frames and associates the same text target to achieve 
continuous tracking of the target. Trajectory prediction 
predicts the target’s position in future frames by analyzing 
its motion trajectory in past frames [11]. The combination of 
these two technologies can significantly improve the 
robustness and accuracy of video text tracking. 

In the context of target association, traditional methods 
primarily rely on motion models and appearance models. 
The motion model assumes that the target's movement 
between adjacent frames is continuous and predictable, with 
common techniques including Kalman filtering and particle 
filtering [12]. These methods construct a motion model for 
the target, predict its position in the subsequent frame, and 
achieve target association by minimizing the error between 
the predicted position and the actual detected position. 
However, these approaches may encounter significant 
prediction errors when processing text targets that exhibit 
rapid motion or complex motion patterns. 

The appearance model, in contrast, facilitates the 
matching and association of different frames by extracting 
the appearance features of the target, such as color, texture, 
and shape. Commonly utilized appearance features include 
histogram features, gradient features, and depth features. In 
recent years, advancements in deep learning have led to 
significant improvements in appearance feature extraction 
methods based on convolutional neural networks (CNNs), 
enhancing the efficacy of target association tasks [13]. For 
example, DeepSORT (Simple Online and Real-time 
Tracking with a Deep Association Metric) achieves real-time, 
high-precision target association by integrating a deep 
learning-based appearance feature extractor with Kalman 
filtering [14]. 

In the realm of trajectory prediction, traditional methods 
primarily rely on linear motion models, such as the 
commonly used uniform linear motion model [15]. However, 
in practical applications, target movement is often nonlinear 
and complex, making it challenging for a simple linear 
model to accurately forecast the target's future position. To 
address this issue, researchers have begun to investigate 

trajectory prediction methods based on deep learning. RNNs 
and LSTM are widely employed in trajectory prediction 
tasks due to their exceptional performance in processing 
time series data. 

Although target association and trajectory prediction 
have demonstrated significant potential in video text 
tracking tasks, these methods still encounter challenges in 
complex scenes, such as text occlusion and variations in 
illumination. To enhance the robustness of target association 
and trajectory prediction, several studies have proposed 
methods for fusing multi-modal information. For instance, 
Kong et al. introduced a multi-modal fusion target 
association method that successfully achieved robust target 
association in complex environments by integrating visual 
and motion features [16]. Furthermore, research utilizing the 
multi-object tracking (MOT) framework has also made 
notable advancements in target association and trajectory 
prediction. The MOTR (Multiple Object Tracking Re-
Identification) framework enables efficient and accurate 
tracking of multiple targets by combining target detection 
and re-identification technologies [17]. 

In summary, although video text detection and tracking 
have made significant progress in previous research, they 
still encounter numerous challenges when addressing text 
targets in complex video scenes. By integrating detection 
and tracking methods grounded in deep learning and 
employing target association and trajectory prediction 
technologies, the robustness and accuracy of video text 
tracking can be further enhanced. Consequently, this study 
proposes an adaptive video text tracking model based on 
pixel-level feature extraction, aimed at addressing these 
challenges. The model has been experimentally validated on 
multiple public datasets, demonstrating substantial 
performance improvements. 

 
 

3. Methodology 
 
This study proposes an ATDTF model based on pixel-level 
feature extraction, which combines PSENet and MOTR 
algorithms to achieve the efficient detection and continuous 
tracking of text objects in videos. The ATDTF model mainly 
includes several modules, including text detection, video text 
tracking, continuous multi-frame processing, and loss 
function. The structure and function of each module are 
introduced in detail below. 

 
3.1 Text Detection 
The text detection module is an important part of the 
ATDTF framework and is responsible for locating and 
identifying text objects in video frames. This module adopts 
the PSENet text detection algorithm based on deep learning, 
extracts feature from video frames through convolutional 
neural networks (CNNs), and uses multi-directional 
prediction and connected component analysis (CCA) to 
locate and identify text regions in images. 

The text detection module uses a pre-trained deep CNN 
(e.g., ResNet) to extract features from input video frames. 
Multi-level convolution operations [18] are conducted to 
extract multi-scale image features that can capture 
information such as edges, textures, and shapes of text 
regions. PSENet uses a multi-directional head network to 
predict the text boundary of each pixel. Head networks in 
different directions can accurately locate text areas of 
complex shapes by integrating the prediction results of 
multiple directions. Based on the multi-directional prediction, 
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PSENet uses the CCA algorithm to merge and classify the 
detected text areas. This algorithm connects discrete text 
pixels into complete text instances by analyzing the 
connection relationship at the pixel level, thereby accurately 
separating closely adjacent text instances. 

The advantage of PSENet lies in its pixel-level detection 
capability and progressive scale expansion algorithm. 
Through the efficient feature extraction and precise detection 
capabilities of PSENet, the text detection module can 
accurately locate text targets in complex video scenes, 
providing high-quality detection results for subsequent video 
text tracking. 

 
3.2 Video Text Tracking 
The video text tracking module aims to achieve continuous 
tracking of text in videos. This module continuously tracks 
text targets by combining target detection, feature extraction, 
and tracking algorithms. 

The video text tracking module begins by using the 
PSENet algorithm to detect text regions in each frame. It 
then extracts image features through CNNs and uses multi-
directional head prediction and CCA to locate text regions 
[19]. Next, feature vectors capturing the appearance 
information of the text are extracted from the detected 
regions using CNNs. Finally, the MOTR algorithm is used 
for target association and tracking. It combines target 
detection and target re-identification techniques and 
associates and matches the detected text targets through 
Kalman filtering and the Hungarian algorithm, thereby 
achieving continuous tracking of the target. 

Through the above steps, the video text tracking module 
can achieve efficient detection and continuous tracking of 
text targets in videos. This module combines the high-
precision text detection capability of PSENet and the robust 
target-tracking capability of MOTR, enabling it to accurately 
locate and continuously track text targets in complex video 
scenes. 
 
3.3 Continuous Multi-frame Processing 
The continuous multi-frame processing module aims to 
solve the problem of continuous tracking of text targets in 
videos. This module realizes continuous tracking of text 
targets by analyzing the motion and deformation of text 
targets between consecutive frames. 

The continuous multi-frame processing module uses 
Kalman filtering to predict the motion trajectory of text 
targets and predicts the position of the target in the next 
frame by modeling the motion state of the target in the 
previous frames. The appearance features of the text targets 
are extracted using a deep CNN, and the targets are matched 
and associated based on these features. The Hungarian 
algorithm is used for target association after combining the 
motion prediction of the Kalman filter and the feature 
matching of the appearance model. This algorithm achieves 
the optimal matching of targets by minimizing the matching 
cost between the detected and tracked targets. By 
comprehensively considering the motion state and 
appearance features of the target, the Hungarian algorithm 
can accurately associate the same text target between 
consecutive frames. 

The continuous multi-frame processing module realizes 
continuous tracking of text targets by combining the motion 
prediction and appearance models, ensuring the association 
and continuity of text targets between video frames. 

 

3.4 Loss Function 
The loss function module plays an important role in the 
ATDTF model. It is used to measure the difference between 
the model’s prediction results and the true labels and serves 
as an optimization target to guide model training. We design 
a multi-task learning loss function that comprehensively 
considers the losses of the text detection and tracking tasks. 

The loss function module uses the cross-entropy loss 
function to measure the difference between the text detection 
results and the true labels. A loss function based on the 
target motion trajectory is designed to guide the model in 
learning accurate text target tracking by comparing the 
difference between the predicted and true trajectories [20]. 
Text detection loss and text tracking loss are weighted and 
fused to construct a comprehensive loss function for multi-
task learning. Through multi-task loss fusion, the model can 
simultaneously optimize the performance of the two 
detection and tracking tasks during training. 

The loss function module is of great significance in the 
ATDTF model. It not only measures the prediction 
performance of the model but also guides its optimization 
and learning. By designing a reasonable multi-task learning 
loss function, the ATDTF model can achieve end-to-end 
optimization training of text targets and improve the overall 
performance of text detection and tracking. 

In summary, the ATDTF model combines the efficient 
text detection capability of PSENet and the robust target 
tracking capability of MOTR to build a high-performance 
end-to-end video text detection and tracking system. The 
various modules work closely together to achieve efficient 
detection and continuous tracking of text targets in complex 
video scenes through feature extraction, target association, 
motion prediction, and multi-task loss optimization. 
Experimental results show that the ATDTF model achieves 
significant performance improvements on multiple public 
datasets, verifying its effectiveness and robustness in 
practical applications. 
 
 
4. Results Analysis  
 
4.1 Datasets and Experimental Details 
In this study, we selected several public datasets for 
experimental evaluation to fully verify the video text 
detection and tracking performance of the ATDTF model in 
different scenarios. The datasets used include ICDAR 2015 
Video, ICDAR 2013 Video, and YouTube-VideoText 
(YVT), which cover various complex scenarios such as 
different lighting conditions, text sizes, font styles, motion 
blur, and occlusion. 

The ICDAR 2015 Video dataset is a standard text 
detection and recognition dataset that contains numerous 
natural scene video clips comprising text information in 
various complex backgrounds. The ICDAR 2013 Video 
dataset is similar, containing a rich variety of scenes 
required for video text detection tasks. These video datasets 
provide real-world text instances that help evaluate and 
verify the performance of the model in practical applications. 
The YVT dataset contains text clips extracted from real 
videos, showing the dynamic changes and complex motion 
patterns of text in videos. 

Experimental Details: To ensure the diversity and 
representativeness of the data, we performed standard 
preprocessing steps on each dataset. Preprocessing includes 
extracting frames from videos, adjusting image size, 
grayscale processing, and applying data enhancement 
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techniques (e.g., random cropping, rotation, and scaling) to 
improve the robustness and generalization ability of the 
model. The specific preprocessing process is as follows: 

(1) Video frame extraction: Extract frames from videos 
to generate image sequences for training and testing. 

(2) Image resizing: All images are uniformly adjusted to 
a fixed size to ensure the consistency of input data. 

(3) Grayscale processing: Convert color images to 
grayscale images to reduce computational complexity. 

(4) Data enhancement: Apply a variety of data 
enhancement techniques (e.g., random cropping, rotation, 
scaling) to increase the diversity of the dataset and improve 
the generalization ability of the model. 

The training and testing of the model were performed on 
a high-performance computer equipped with an NVIDIA 
Tesla V100 GPU, and the deep learning framework used 
was PyTorch. We used the Adam optimizer for training, set 
the initial learning rate to 0.001, and decayed the learning 
rate during training (every 10 epochs). Each model was 
iterated multiple times during training to ensure the 
convergence and performance optimization of the model. 
After training, we evaluated the model on the test set and 
calculated the accuracy, recall, F1 value, and other indicators 
for text detection and tracking. 

In terms of experimental details, we performed standard 
preprocessing steps on each dataset, including video frame 
extraction, image resizing, grayscale processing and data 
augmentation techniques (e.g., random cropping, rotation, 
scaling) to improve the robustness and generalization ability 
of the model. We used the OpenCV library for video frame 
processing and adopted common data augmentation 
techniques to increase the diversity of training data. These 
steps helped improve the training effect of the model and 
effectively simulated different practical application scenarios. 
Each model was trained for multiple iterations to ensure the 
convergence and performance optimization of the model. 
After training, we evaluated the model on the test set and 
calculated the accuracy, recall, F1 value, and other indicators 
for text detection and tracking. 

To evaluate the performance of the model, we divided 
the dataset into a training set and a test set. We adopted 
multiple training validations in the ICDAR 2015 Video, 
ICDAR 2013 Video, and YVT datasets. This ensured the 
diversity and representativeness of data during training and 
testing, thereby improving the reliability of evaluation 
results. 

Through the above experimental settings and detailed 
preprocessing steps, we could comprehensively evaluate the 
performance of the ATDTF model in different datasets and 
scenarios. The experimental results show that the ATDTF 
model can achieve excellent performance when dealing with 
complex video text detection and tracking tasks, 
demonstrating its potential and value in practical 
applications. 
 
4.2 Experimental Environment 
This experiment was conducted on a high-performance 
computer equipped with an NVIDIA Tesla V100 GPU. This 
GPU provides powerful computing power and large-scale 
parallel processing capabilities, enabling us to efficiently 
train deep learning models. The deep learning framework 
uses PyTorch, and model training and testing are completed 
in this environment. The experimental environment is shown 
in Table 1. 
 
 

Table 1. Hardware and Software Configuration 
Configuration 
Type 

Components More Information 

 
Hardware 
Configuration 

GPU NVIDIA Tesla V100 
CPU Intel Xeon E5-2698 v4 

Memory 256GB DDR4 RAM 
Storage 2TB SSD 

 
Software 
Configuration 

Operating System Ubuntu 18.04 LTS 
Deep Learning 
Frameworks 

PyTorch 1.7.0 

CUDA Version 10.2 
cuDNN Version 7.6 

 
In such a hardware and software environment, we can 

efficiently train and test large-scale datasets to ensure the 
high performance and stability of the model. During the 
experiment, we also used a variety of tools and libraries to 
assist in data processing and result analysis, visualization, 
and so on. 

 
4.3 Evaluation Indicators 
In the experiment, various evaluation indicators were used to 
evaluate the performance of the model, including accuracy, 
recall, and F1 value. These indicators can comprehensively 
measure the performance of the model in text detection and 
tracking tasks and are specifically defined below.  

Text detection indicators: 
Precision: Precision is used to measure how much of the 

text area detected by the model is real text. The calculation 
formula is  

 

        
(1) 

 
where TP (True Positive) indicates the number of 

correctly detected text instances, and FP (False Positive) 
indicates the number of incorrectly detected text instances. 

Recall: Recall is used to measure how many of all the 
real text regions that the model finds are detected. The 
calculation formula is as follows: 

 

                                   
(2) 

 
where FN (False Negative) represents the number of real 

text instances that failed to be detected. 
F1-Score: F1-Score is a comprehensive measure of 

accuracy and recall that can provide a comprehensive 
evaluation of the overall performance of the model. The 
calculation formula is 

 

                                             (3) 

 
Researchers have developed a variety of indicators to 

comprehensively evaluate the performance of multi-target 
video tracking algorithms. Among them, multi-target 
tracking accuracy (MOTA) and multi-target tracking 
precision (MOTP) are the two most widely used evaluation 
indicators. They not only consider the tracking accuracy but 
also include an evaluation of the algorithm’s performance in 
dealing with occlusion, false detection, and target loss, as 
well as the F1 score (IDF1) value based on target identity. 
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MOTA comprehensively considers the effects of false 
detection, omission, and ID switching, thus providing an 
indicator to quantify the overall performance of multi-target 
tracking. The calculation formula of MOTA is  
 

                 
(4) 

 
where  represents the number of missed targets at time, 

 represents the number of falsely detected targets, 
 is the number of ID switches, and  is the total 

number of true targets. The value of MOTA ranges from -∞ 
to 1, with higher values indicating better tracking 
performance. 

MOTP measures the average error between the predicted 
position of a correctly tracked target and its true position, 
thus reflecting the accuracy of the tracker in locating the 
target. The calculation formula of MOTP is as follows:  

 

                                      
(5) 

 
where  is the distance between the predicted position 

and the true position of the target tracked at time, and  is 
the number of correctly matched targets at time. MOTP is 
measured in distance units (e.g., pixels), with lower values 
indicating higher position accuracy. 

The IDF1 metric was proposed by Ristani et al. in 2016 
to evaluate the effectiveness of tracking algorithms in 
maintaining the consistency of target identities. It is 
calculated by comparing the consistency between the 
predicted identity and the true identity. Specifically, IDF1 is 
the F1 score based on the target identity, combining the 
harmonic mean of precision and recall. The calculation 
formula is shown in Formula 6:  

 

                             
(6) 

 
where IDTP (True Positive) represents the number of 

correctly matched identities, IDFP (False Positive) 
represents the number of incorrectly matched identities, and 
IDFN (False Negative) represents the number of unmatched 
true identities. 

During the experiment, we calculated these indicators on 
the ICDAR 2015 Video, ICDAR 2013 Video, and YVT 
datasets to comprehensively evaluate the performance of the 

ATDTF model. Through these evaluation indicators, we 
could quantify the performance of the model in different 
scenarios and conditions, thereby verifying its effectiveness 
and robustness in practical applications. The experimental 
results show that the ATDTF model performs well on all test 
datasets, achieving high precision, recall, and F1 values, 
fully demonstrating its superior performance in video text 
detection and tracking tasks. 

 
4.4 Experimental analysis of video text detection 
Video text detection is one of the key modules in the 
ATDTF model, and its main task is to accurately detect text 
regions from video frames. Multiple datasets are used to 
evaluate the text detection performance of the ATDTF 
model. To improve the accuracy and robustness of detection, 
we designed a multi-scale detection algorithm based on deep 
learning. The text detection module uses a pre-trained deep 
CNN (e.g., ResNet) to extract features from the input video 
frames. Through multi-level convolution operations, multi-
scale image features are extracted that can capture 
information such as the edge, texture, and shape of the text 
region. The multi-scale feature pyramid network (FPN) is 
combined with the multi-directional prediction and CCA of 
PSENet to capture text information at different scales. FPN 
can effectively detect text regions of various sizes and 
shapes by fusing features at different scales. 
 

 
Fig.1. Results of tracking visualization 
 

 
Table 2. Video tracking accuracy 
Dataset Method Video text tracking/% FPS 

IDF1 MOTA MOTP M-Matched M- 
Lost 

ICD15 
video 
 

USTB TexVideo 25.9 7.4 70.8 7.4 66.1  
StradVision-1 25.9 7.9 70.2 6.5 70.8  

USTB_TexVideo(II-2) 21.9 12.3 71.8 4.8 72.3  
AJOU 36.1 16.4 72.7 14.1 62.0 8.8 
Free 57.9 43.2 76.7 36.6 44.4 8.8 

TransVTSpotter 57.3 44.1 75.8 34.3 33.7 9.0 
our ATDTF 58.5 46.2 74.6 33.7 32.8 30.1 

ICD13 
video 

our ATDTF 49.5 42.3 71.6 34.1 38.2 33.1 

YVT our ATDTF 61.5 49.3 76.4 38.1 39.3 34.4 
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To further improve the detection accuracy, we added 
data augmentation techniques during the training process. 
These techniques include random cropping, rotation, 
flipping, and color perturbation, all of which help to enhance 
the generalization and robustness of the model. Through 
these methods, the model can still maintain high detection 
accuracy in the face of various complex scenes. 

During the training process, the model is optimized by 
the cross-entropy loss function and the Intersection over 
Union (IoU) loss function using the annotated text region 
data. The cross-entropy loss is used to measure the 
classification error, while the IoU loss is used to measure the 
overlap between the detection box and the true box, thereby 
improving the detection accuracy. Specifically, the cross-
entropy loss is used to calculate the classification error 
between the predicted text region and the actual label, and 
the IoU loss is used to evaluate the overlap between the 
predicted bounding box and the actual bounding box. By 
combining these two loss functions, the model can 
continuously adjust its parameters during the training 
process to improve the accuracy and robustness of text 
detection. 

Comparative experiments on video text detection tasks 
on multiple public datasets demonstrate the performance 
advantages of the ATDTF model. The image pixels are fixed 
to 736 to show the trade-off between accuracy and speed. In 
these experiments, the ATDTF model improves the F value 
by 0.6% over the current method Free, the detection speed is 
at least 21 frames per second faster, and the running speed is 
increased twofold, as shown in Table 2. In addition, the 
visualization results are shown in Fig 1, which demonstrates 
the effectiveness of the model in the text detection task. 

Through the above experimental analysis and results, the 
advantages of the ATDTF model in the video text detection 
task are verified, and its significant improvement in accuracy 
and robustness is demonstrated. 

 
4.5 Comparative Experiment 
Statistics of text size indicators: The text size often affects 
the accuracy of video text recognition. To better understand 
this impact, the text was classified and counted according to 
the area size of the text. 

The classification of area sizes is as follows: small size, 
the text area does not exceed 1500 pixels; medium size, the 
text area is between 1500 and 2500 pixels; and large size, 
text area exceeds 2500 pixels. The model visualizes the area 
size classification (Table 3 and Fig 2). Accordingly, it can be 
judged that the medium-sized text has the best tracking 
effect. 

 
Table 3. Area size classification 
Dataset 
ICD13Video 

Video text tracking/% 
IDF1 MOTA MOTP M-Matched M-Lost 

Small 44.2 20.5 71.1 28.6 53.3 
Medium 43.5 5.1 77.7 17.7 49.6 
Big 74.1 58.1 80.2 55.7 18.8 
 

For example, the ATDTF model shows higher 
robustness and stability in dealing with motion blur, 
illumination changes, and partial occlusion. This is mainly 
due to the multi-scale feature extraction and multi-task 
learning strategy we introduced in the model design. 
Through multi-scale feature extraction, the ATDTF model 
can better capture text information of different scales, while 
the multi-task learning strategy improves the overall 
performance of the model by optimizing text detection and 
tracking tasks simultaneously. 

 
Fig. 2. Visualization results of area size classification 

 
In this study, an ATDTF model based on pixel-level 

feature extraction is proposed for the first time. ATDTF 
solves two tasks, text detection and tracking, in one model 
and adopts the semantic information between learning 
contexts of consecutive frames. With the help of lightweight 
architecture, such as backbone network, effective detection 
head, and tracking head, ATDTF completes video text 
tracking with an IDF1 of 61.5% at 34.4 FPS on YVT (Table 
2). This truly end-to-end and high inference speed method 
will be applied to more video and language tasks in the 
future. 

The comparative experimental results fully demonstrate 
the superior performance of the ATDTF model in video text 
detection and tracking tasks and demonstrate its potential 
and value in practical applications. These results verify the 
effectiveness of the ATDTF model and provide important 
references and lessons for future research. Through further 
optimization and improvement, the ATDTF model is 
expected to play an important role in more practical 
applications and contribute to the development of the field of 
video text information processing. 
 
 
5. Conclusion 
 
This study proposes an ATDTF model based on pixel-level 
feature extraction, which comprehensively utilizes text 
detection and multi-target tracking algorithms to achieve 
accurate detection and continuous tracking of text in videos. 
The conclusions are as follows: 

(1) The performance of the ATDTF model in text 
detection and tracking is significantly improved, and it can 
effectively handle a variety of video scenarios, which is 
beneficial to improving the accuracy of analysis and 
understanding of video content. 

(2) Experimental results show that the ATDTF model 
exhibits high accuracy and stability in most test scenarios, 
verifying the practical application value of this method. 

(3) The detection and tracking errors of the ATDTF 
model are small, indicating that the model can still maintain 
high recognition accuracy under various complex 
backgrounds and has strong robustness. 

(4) The model proposed in this article reaches a high 
level in both recall and accuracy, further proving its 
practicality and effectiveness in video text tracking tasks. 

Although the research in this article achieves certain 
results, it still has shortcomings. In particular, the model’s 
adaptability in extremely complex and changeable scenarios 
still needs to be improved, and the demand for computing 
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resources is high. In the future, it is necessary to optimize 
the model structure, integrate more complex scene data, and 
improve real-time performance to improve the accuracy and 
practicality of video text tracking and provide a more 
reliable tool for in-depth understanding and intelligent 
analysis of video content. 

 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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