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Abstract 
 

Speech recognition based on large neural network models requires vast computing resources and storage, and this 
requirement severely limits their direct application in resource-constrained edge devices. To considerably reduce the size 
and complexity of models while retaining the core performance of the original models, this study proposed a novel graph 
representation augmented with knowledge distillation (GraphRAG) speech recognition method based on adaptive 
multilevel distillation pruning (AMDP). First, graph neural networks were used to build and optimize knowledge graph 
embeddings to enhance the model’s semantic understanding of speech signals. Second, an adaptive multilevel distillation 
mechanism was introduced to build a teacher–student architecture composed of multiple models of different sizes. The 
large bottom-layer model served as the main teacher, and the student models at each layer sequentially learned from the 
teacher model of the previous layer. Third, after each round of distillation, the student model was refined and pruned to 
further compress the model size while maintaining high recognition accuracy. Last, detailed experimental tests were 
conducted on multiple benchmark speech recognition data sets to verify the effectiveness of AMDP-GraphRAG 
technology. Results demonstrate that, (1) AMDP-GraphRAG consumes minimal computing time and memory while 
ensuring a low word error rate (WER). WER with and without a graph is 8% and 10%, respectively. The memory usage 
of the baseline is about 500 MB, whereas the memory usage of AMDP-GraphRAG is about 350 MB, which is the lowest 
among all the values produce by all the compared models. (2) The AMDP-GraphRAG model can maintain or improve 
recognition accuracy while reducing the number of parameters. The baseline has 120 million parameters, and AMDP has 
only 10 million parameters. Moreover, the baseline’s WER is 3.5%, and that of AMDP-GraphRAG is 2.8%. (3) Atlas 
information can enhance the generalization ability of the models. Models with graph information can adapt quickly and 
show improved recognition accuracy. This study can considerably reduce the scale of models, decrease computational 
complexity and resource consumption, and serve as a reference for improving the application of speech recognition 
technology in edge devices. 
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1. Introduction 
 
With the rapid development of artificial intelligence (AI) 
technology in recent years, deep learning, as one of the core 
driving forces of AI, has demonstrated breakthrough 
progress in many fields, particularly in speech recognition 
[1][2]. The accuracy and robustness of speech recognition 
systems have improved remarkably because of the powerful 
representation learning capabilities of deep learning 
algorithms and the support of massive data [3][4]. These 
systems are widely used in smartphones, smart homes, self-
driving cars, and medical assistance apparatuses because 
they improve people’s life experience and work efficiency. 

However, such massive technological progress creates a 
challenge, that is, the high computing resource and storage 
requirements of large neural network models severely limit 
their direct application to resource-constrained edge devices. 
To overcome this problem, the research community and 
various industries have actively explored model compression 
and optimization technologies that retain the core 
performance of the original model while considerably 
reducing the size and complexity of the model, thereby 
achieving efficient, lightweight deployment [5]. Knowledge 
distillation and model pruning, which are mainstream 
technical methods, have attracted much attention and 

achieved remarkable results [6]. Knowledge distillation 
allows the teacher model (a large model with superior 
performance) to guide the learning of the small student 
model, which can inherit the key knowledge of the teacher 
model and achieve balance between performance and scale. 
By removing redundant parameters or structures in the 
model, model pruning directly reduces the volume and 
calculation amount of the model to further improve its 
operating efficiency. 

This study proposed an innovative model compression 
technology called adaptive multilevel distillation–graph-
based refined model aggregation and generalization (AMD-
GraphRAG), which integrates an adaptive multilevel 
distillation strategy and a graph-based accurate model 
pruning method to further improve the performance and 
efficiency of lightweight speech recognition models. The 
core of AMD-GraphRAG technology is its multilevel 
distillation mechanism that can dynamically adjust the 
distillation strategy in accordance with the different levels of 
the model and the importance of features to ensure the 
effective transmission of key information. With graph-based 
model pruning technology, a detailed analysis of the internal 
structure of the model was conducted to identify and prune 
unnecessary or low-contribution components and further 
optimize the model structure. The application of AMD-
GraphRAG technology is expected to substantially reduce 
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the size of the model, computational complexity, and 
resource consumption while maintaining or even enhancing 
the accuracy of speech recognition, thus facilitating the 
widespread application of speech recognition technology in 
edge devices. The study’s results promote the popularization 
and development of smart Internet of Things (IoT) devices 
and provide strong technical support for realizing a highly 
intelligent and convenient lifestyle. 
 
 
2. State of the art  
 
This study focused on the application of graph embedding 
and deep learning in speech recognition and proposed a 
novel speech recognition technology on the basis of adaptive 
multilevel distillation pruning (AMDP). Hershey et al. 
proposed a deep clustering method, which has received 
widespread attention as a deep learning-based speech 
separation technology [5]. The method uses a neural network 
to learn the correlation between mixed speech and high-
dimensional embedding space, clusters the embedding 
vectors in accordance with their corresponding speech 
sources, and employs the clustered embeddings to estimate 
independent speech sources. Specifically, a neural network 
is trained to graph mixed speech to a high-dimensional 
embedding space, and embedding vectors belonging to the 
same speech source are grouped together. Once the 
individual speech sources are estimated, they are separated 
using clustered embeddings. The permutation invariant 
training method proposed by Kolbaek et al. uses a neural 
network to generate a set of permutations for each speech 
source and selects the permutation with the smallest 
reconstruction error[1]. The task is challenging because of 
the diversity of speech patterns and accents and the potential 
interference from environmental noise. Given the 
advancement of machine learning algorithms, deep learning-
based technology has been extensively applied in speech 
recognition and has achieved good results on various speech 
recognition benchmarks.  

The connection temporal classification method proposed 
by Graves et al. is widely recognized as a major deep 
learning speech recognition approach [6].The method uses 
neural networks to learn direct mapping from the acoustic 
features of speech to text transcription, eliminating the need 
for explicit alignment. The Listen, Attend, and Spell 
technology proposed by Chan et al. is a common method 
that uses an attention mechanism to focus on different 
segments of the input speech signal during decoding [7]. 
With the advancement of deep learning technology, the 
performance of speech separation systems has substantially 
improved. Michelsanti et al. conducted an exhaustive 
analysis of contemporary methods and strategies for speech 
separation and used deep learning in their review [8]. In 
addition, Subramanian et al. proposed an end-to-end speech 
separation method that realizes direct mapping from mixed 
speech to a single speech source without intermediate 
processing stages[9]. Malik et al. described a joint study on 
speech separation and recognition in their review [10]. 
Despite the continuous development of research on the use 
of deep learning in speech separation and recognition, 
further work is still needed to improve the performance of 
systems [11]. Zhang Shaohua  proposed a dual-channel 
network model on the basis of the squeeze–excitation 
attention mechanism and deep convolution to solve the 
problem of low recognition accuracy resulting from the 
inability of speech recognition to fully extract speech 

features[12].To address the Conformer encoder’s 
insufficient ability to extract fine-grained local features of 
speech, Hu Conggang proposed a Conformer Chinese 
speech recognition method that integrates maximum pooling, 
it max-pools the output of the gated linear unit in the 
encoder convolution module to extract the fine-grained local 
features of a multiframe speech signal corresponding to a 
character [13]. Ou Jiale established a simple multimodal 
joint modeling framework that regards the joint modeling of 
speech translation and text translation as multilingual neural 
machine translation modeling, introduced modality-aware 
relative position encoding into the self-attention layer, and 
used a modality-aware single encoder to simultaneously 
realize speech and text translation [14]. Tian Sanli proposed 
a method called WLformer that integrates discrete wavelet 
transform (DWT) with end-to-end speech recognition to 
solve the problem of high computing resource usage of 
current end-to-end speech recognition models [15]. The 
model introduces the proposed signal compression module 
on the basis of DWT. This module compresses the 
representation by removing the high-frequency components 
with minimal information in the middle layer representation 
of the model, thereby reducing the computational resource 
consumption of the model.  

To improve the accuracy of the mixed Chinese and 
English speech recognition system, Zhang Cong adopted a 
new E-Branchformer model that uses parallel branches to 
simultaneously extract global and local information and 
added depth convolution to the merging module to enhance 
the information fusion effect [16]. On the basis of the speech 
recognition optimization method called mel-frequency 
cepstral coefficients and the hidden Markov model (HMM), 
Guo Jiaqi introduced the expectation–maximization 
algorithm to optimize HMM and overcome the difficulty 
experienced by traditional HMM in recognizing complex 
speech environments [17]. In view of the limited modeling 
ability of convolutional neural networks (CNNs) for time 
series in automatic speech recognition process and the high 
computational complexity of deep CNN, Zhang Xuhang 
proposed a speech recognition model that integrates dilated 
CNN and a bidirectional long short-term memory network 
[18]. Kure and Dhonde proposed a solution that combines 
mel-frequency overlap transform with deep CNN for muscle 
rigidity speech recognition. The method demonstrates 
superior spectral–temporal representation of speech signals 
and outperforms traditional state-of-the-art techniques. This 
approach highlights the potential of using deep learning 
architectures to improve the accuracy and robustness of 
speech recognition systems. Meanwhile, Avila et al. 
explored the use of deep neural networks for speech emotion 
recognition on mobile devices and adopted modulation 
spectrum feature pooling [19]. Their experimental results 
showed that the proposed emotion recognition system 
outperforms the baseline algorithm in the 2016 Audio–Video 
Emotion Challenge in terms of the consistency correlation 
coefficient. This study highlights the adaptability of deep 
learning techniques to mobile platforms and their 
effectiveness in capturing subtle emotional information in 
speech.  

Kristomo and Nugroho discussed speech signal 
classification through the fusion of time- and frequency-
domain features [20]. They proposed three feature sets that 
use DWT, wavelet packet transform, and statistical methods 
to classify stop consonant word speech signals. Their work 
highlights the importance of multidomain feature extraction 
in improving speech signal classification accuracy and 
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provides a powerful framework for integrating multiple 
signal processing techniques. 

Comparison of these studies shows that deep learning 
technology is increasingly being used to solve various 
challenges in speech recognition. Kure and Dhonde and 
Avila et al. employed deep neural networks. Although their 
application domains differed (one for muscle rigidity speech 
recognition and the other for speech emotion recognition), 
their studies improve system performance through complex 
neural network architectures and demonstrate that deep 
learning is a versatile tool in the field of speech recognition. 
However, these studies had limitations, which can serve as 
future work directions. Although Kure and Dhonde and 
Avila et al. achieved considerable improvements, the 
computational complexity and resource requirements of 
deep learning models remain a challenge, especially when 
these models are applied on mobile devices in real time. 
Another issue is the reliance on specific data sets and the 
lack of generalization across different speech types and 
contexts. Kristomo and Nugroho addressed this problem to 
some extent by proposing multidomain feature extraction 
methods, but combining these methods with deep learning 
models to achieve broad applicability remains an unsolved 
problem. 

To address these issues, this study optimized deep 
learning models to reduce the computational overhead, 
explored hybrid models that combine deep learning with 
knowledge graphs to enhance generalization capabilities, 
and developed a comprehensive evaluation framework that 
considers different speech types and environmental 
conditions [21][22].These advancements improve the 
performance of speech recognition systems and expand their 
application to real-world scenarios [23][24]. 

The remainder of this study is structured as follows. 
Section 3 introduces knowledge distillation-enhanced graph-
based speech recognition (KDGS). Section 4 verifies the 
effectiveness of AMD-GraphRAG technology and presents 
detailed experimental tests on multiple benchmark speech 
recognition data sets. Section 5 summarizes this study. 
AMDP-GraphRAG has advantages in performance 
optimization, recognition accuracy, computing time, and 
memory usage. It can remarkably reduce computing time 
and memory usage while ensuring a low word error rate 
(WER). 
 
 
3. Methodology  

 
With the rapid development of natural language 
understanding and speech recognition, knowledge graph, as 
an effective semantic representation tool, has become an 
important bridge connecting text information and structured 
data. However, how to effectively integrate knowledge 
graph and speech recognition technology in practice remains 
challenging. This study explored a new framework that 
combines knowledge distillation strategies (i.e., KDGS) and 
experimentally verified its effect on improving speech 
recognition performance. 
 
3.1 Knowledge graph embedding 
For GraphRAG, graph neural networks (GNNs) were used to 
build and optimize knowledge graph embeddings for 
enhancing the model’s semantic understanding of speech 
signals. 

Graph convolution encoder: GNN was applied to encode 
the predefined knowledge graph and generate a series of 

entity vectors containing global context information. The 
purpose of this step is to capture the differences in how 
closely each lexical item is related to other words in the 
corpus so that the implicit semantic connections can be fully 
considered in the subsequent processing stages. 

Attention-guided acoustic modeling: The sound signal 
obtained above was combined with the acoustic features of 
the current frame to form a new input. A multihead self-
attention layer was used to calculate weight matrix A 
between positions, and the weighted average method was 
applied to obtain the final context-aware vector. The GNNs 
iteratively updated the embedding vector of an entity so that 
it contained the characteristics of the entity itself and 
reflected its correlation with other entities in the graph. 

Suppose that  is a knowledge graph, where 
 is a set of nodes (entities) and  is a set of edges 

(relationships). For each node , the update formula of 
embedding vector  in the  round of iteration is as 
follows: 

 

                    (1) 

 
where is the activation function;  and  are the 
weight matrix and bias term, respectively;  is an 
aggregation function (e.g., mean, max, or attention-based 

aggregation);  is the embedding of neighbor nodes  
adjusted by relationship matrix ; and is  
weight matrix corresponding to relationship type . 
 
3.2 AMD 
In AMD-GraphRAG, an AMD mechanism is introduced to 
flexibly adjust the distillation process in accordance with the 
needs of different model levels. The mechanism mainly 
includes the following key components: 

Multilevel teacher–student architecture: A teacher–
student structure composed of multiple models of different 
sizes is established. The large model at the bottom layer 
serves as the main teacher, and the student model at each 
layer learns from the teacher model at the previous layer. 

 Soft label of the teacher model (i.e., probability 
distribution of output): This label is taken as one of the 
learning goals of the student model in combination with the 
traditional hard label (one-hot encoding of the real category). 
The objective function at this stage can be expressed as  

 
                       (2) 

 
where  is the cross entropy loss,  is the Kullback–
Leibler divergence (measures the distance between two 
probability distributions), and  is the proportional 
coefficient that balances the contributions.  

Graph integration: In the student model, the GNN of 
the knowledge graph is introduced to use graph information 
in enhancing the language understanding ability of the 
model. This process involves graph convolution operations, 
which can be expressed as  

 
               (3) 
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where  is the node feature matrix of layer ,  is the 

normalized adjacency matrix, is the degree matrix,  is 
the weight matrix, and  is the activation function. 

Hierarchical distillation strategy: The distillation 
process of each layer is fine-tuned on the basis of the 
characteristics of the teacher model of the previous layer and 
the capabilities of the current student model to ensure that 
each distillation can effectively transfer knowledge. 

Adaptive distillation temperature adjustment: 
Distillation temperature (temperature scaling) is an 
important factor that determines the effectiveness of the 
distillation process. In AMD-GraphRAG, the distillation 
temperature is dynamically adjusted based on the training 
progress and performance of the student model to determine 
the optimal distillation configuration. 

 
3.3 Multilevel model pruning 
In addition to adaptive multilevel distillation, multilevel 
model pruning is integrated into AMD-GraphRAG. After 
each round of distillation, the current student model is fine-
tuned to further compress the model size while maintaining 
high recognition accuracy. The objective function of model 
pruning is defined as follows: 
   

                 (4) 
 
subject to 
 

                         (5) 
 

where  is the loss function of student model in the 
task, similar to cross entropy loss.  is the penalty 
term for model pruning, and it can control model complexity. 

 and  are weights used to balance task and pruning 
losses, respectively. and represent the minimum and 
maximum pruning thresholds, respectively, and are used to 
control the pruning degree. 

 
 

4. Result Analysis and Discussion 
 
4.1 Experimental design and data set selection 
Exhaustive experimental tests were conducted on multiple 
benchmark speech recognition data sets, including 
LibriSpeech and TED-LIUM Release 3, to verify the 
effectiveness of AMD-GraphRAG technology. The 
experimental results demonstrated the considerable 
improvement of AMD-GraphRAG in terms of model size 
and computational cost and confirmed the advantages of the 
technology in recognition accuracy. 

Fig. 1 compares the WER values of the teacher model, 
the student model, and the control model without graph 
information on different test sets. It reveals the performance 
gain brought by graph information and knowledge 
distillation. The chart focuses on the performance of 
different models in terms of WER and the comparison of the 
teacher model, the student model, and the control model 
without graph information. 

The error rates of the teacher model, the student model 
with graph information, and the student model without 
knowledge graph information were 12%, 8.5%, and 10.2%, 

respectively. The chart reflects the value of graph 
information. The model using graph information exhibited a 
remarkable advantage over the model without graph 
information in reducing WER. This result shows that graph 
information can provide additional knowledge or context to 
the model, thereby helping improve recognition accuracy. 
 

 
Fig. 1. Word error rate comparison  

 
 

4.2 Analysis of the effect of knowledge distillation 
By transferring the knowledge of a trained large model 
(teacher model) to a small model (student model), the 
student model, even though it is small, can achieve 
performance that is close to or even better than that of the 
original large model. This situation proves the effectiveness 
of knowledge distillation technology and shows that the 
method can considerably reduce model size without 
sacrificing performance. 

As shown in the figure, graph information enhanced the 
model’s ability to understand text, and the knowledge 
distillation methods achieved efficient miniaturized model 
construction. The combination improved the accuracy and 
efficiency of the model and made the final product suitable 
for deployment in resource-constrained environments. This 
finding has important implications for developing speech 
recognition solutions for practical applications. 

 

 
Fig. 2. Model size and computing speed 
 

Fig. 2 shows model complexity (in terms of the number 
of parameters) versus average recognition time. It highlights 
the effectiveness of knowledge distillation in reducing model 
size while maintaining or even increasing the processing 
speed. The graphs focus on the relationship between model 
complexity (measured as the number of parameters) and 
average recognition time. The chart results were analyzed.  

The average recognition time of the 108M, 4×107M, and 
2×107M models was 120, 80, and 2×107 ms, respectively. 
The chart shows that when the number of model parameters 
decreased (i.e., the model became increasingly compact), the 

!" !
!
!

!
! !"

!

! "# $ # $ # $!"#$ %&'(F* + , + , +λ λ= +

! "! "θ θ< < <

! "!"#$% & !
! "!"#$%& '

!λ !λ

!θ !θ



Wei Zhao and Rongsheng Zhao/Journal of Engineering Science and Technology Review 17 (6) (2024) 1 - 8 

 5 

average recognition time decreased. This result shows that 
simplifying the model through appropriate technical means 
does not necessarily lead to performance degradation; it can 
also improve operating efficiency in many cases. 

 
4.3 Analysis of the role of knowledge distillation 
Knowledge distillation is a process of transferring 
knowledge from a large, complex model (teacher model) to 
a small, concise model (student model). This approach can 
effectively reduce model size without sacrificing accuracy. 
The miniaturized model, after knowledge distillation, 
remarkably reduced the demand for computing resources 
and processing time while maintaining or approaching the 
original high performance level. 

For application scenes that require fast responses, such 
as voice assistants on mobile devices or real-time translation 
services, models that process fast and consume minimal 
resources are particularly important. Therefore, knowledge 
distillation technology provides strong support for the 
development of efficient, lightweight speech recognition 
solutions. 

 

 
Fig. 3. Effect of graph information on model performance 
 

The bar chart in Fig. 3 compares the performance of 
student models with and without graph information support 
in various test scenarios. It highlights the important role of 
graph information in improving speech recognition accuracy. 
The figure visually displays the performance of the student 
model in different test scenarios with and without the 
support of graph information in the form of a bar chart. 
Graph information refers to additional auxiliary information 
about the speaker, language environment, and background 
noise aside from the audio signal during the speech 
recognition process. It can substantially improve the model’s 
understanding and speech signal recognition accuracy. 

As shown in the figure, when the model was supported 
by graph information, its performance in all the test 
scenarios improved remarkably. The models showed 
considerable differences in the following aspects. 

Recognition accuracy: The recognition accuracy of the 
models with and without graph information exhibited a 
notable difference. In Scenario 1, WER with graph 
information was 8%, and WER without graph information 
was 10%. In Scenario 2, WER with and without graph 
information was 7% and 9%, respectively. In Scenario 3, 
WER with and without graph information was 8% and 11%, 
respectively. In Scenario 4, WER with graph information 

was 7%, and WER without graph information was 9%. The 
models with graph information support showed high 
accuracy in all the test scenarios, indicating that graph 
information can provide additional contextual information to 
the model and help the model understand and process speech 
signals. 

Scene adaptability: Graph information could also 
improve the scene adaptability of the models. In the different 
test scenarios, such as quiet environments, environments 
with background noise, and environments where multiple 
people are talking simultaneously, the models with graph 
information support could adapt to environmental changes 
and maintain high recognition accuracy. 

Robustness: When faced with various challenges, such 
as the lack of atlas information and degradation of signal 
quality, the models supported by graph information showed 
high robustness. These models maintained stable 
performance even under nonideal conditions. 

Generalization ability: Graph information enhanced the 
generalization ability of the models. When faced with new 
scenes or speakers, the models with graph information could 
adapt quickly and showed improved recognition accuracy, 
which is particularly important in practical applications. 

To sum up, Fig. 3 highlights the important role of graph 
information in improving speech recognition accuracy by 
comparing the performance of models with and without 
graph information support in various test scenarios. This 
discovery is important for the design and optimization of 
speech recognition systems and reminds us that in practical 
applications, we should make full use of atlas information to 
improve the recognition performance of systems and user 
experience. 

 

 
Fig. 4. Influence of graph information on model performance 
 

The chart in Fig. 4 shows the change trends of the 
number of model parameters and recognition accuracy 
during the AMDP process. These trends are crucial to 
understanding how AMDP technology affects model size 
and performance. Analysis of the chart results revealed that 
as the AMDP process proceeded, the number of model 
parameters gradually decreased. The numbers of the original 
model, Level 1, Level 2, Level 3, and final model 
parameters were 80, 60, 40, 30, and 3 million, respectively. 
This finding shows that the pruning technique effectively 
simplified the model. This simplification helped reduce the 
storage requirements and computational cost of the model, 
making the model suitable for deployment on resource-
constrained devices, such as mobile phones and embedded 
systems. The chart in Fig. 4 also shows that the model could 
still maintain high recognition accuracy even when the 
number of parameters was reduced. The AMDP method 
effectively removed the parts that had minimal effects on the 
final performance while retaining the important parameter 



Wei Zhao and Rongsheng Zhao/Journal of Engineering Science and Technology Review 17 (6) (2024) 1 - 8 

 6 

structure. Analysis of the relationship between the number of 
model parameters and recognition accuracy indicated that 
the AMDP strategy maintained a sufficient performance 
level and achieved model light weighting. 

 

 
Fig. 5. Effect of graph information on model performance 
 

The chart in Fig. 5 compares the performance of 
different models on the LibriSpeech data set. The chart also 
shows the number of parameters and recognition accuracy of 
each model on the LibriSpeech data set. The large baseline’s 
volume was 120 million parameters, the medium baseline’s 
volume was 80 million parameters, the small baseline’s 
volume was 50 million parameters, and AMDP’s volume 
was 10 million parameters. Typically, large models (with 
many parameters) are likely to have high accuracy because 
they can capture complex patterns. However, this trend is 
not absolute. The chart above shows that sometimes, through 
optimization techniques, such as knowledge distillation or 
pruning, small models can achieve performance that is close 
to or even surpasses that of large models, and their 
recognition accuracy is almost the same. 

The baseline model was compared with the model 
version that uses new technologies (e.g., graph information 
enhancement and AMDP) to reveal the specific 
contributions of the aforementioned improvements to the 
enhancement of recognition accuracy. The AMDP-
GraphRAG model could maintain or improve recognition 
accuracy while reducing the number of parameters. 
 

 
Fig.6. Comparison of the WER values of the baseline model and the 
GraphRAG variant 

 
The histogram in Fig. 6 shows the WER gap between 

different model versions and intuitively reflects the role of 
AMDP technology in improving model performance. The 
WER of the models decreased with the upgrade of the 
GraphRAG version and the application of distillation 

pruning, which further proves the effectiveness of the 
technology. The WERs of the baseline model and different 
versions of GraphRAG are presented as a histogram. This 
intuitive representation helps understand the role of AMDP 
technology in improving model performance. The following 
text shows a specific analysis on the basis of the chart. 

With the transition from the baseline model to the 
higher-level GraphRAG versions, a clear trend was observed: 
WER continuously decreased. The WER of the baseline was 
3.5%, and the WER of GraphRAG v1 was 3.2%, which is 
slightly lower than that of the baseline. GraphRAG v2 had a 
WER of 3%, and AMDP-GraphRAG had the lowest WER 
of 2.8% among all the versions. This finding shows that each 
improvement step or the adoption of new strategies 
effectively improved the model’s recognition accuracy. In 
particular, model performance considerably improved when 
the AMDP strategy was introduced. By presenting the WER 
gap between different model versions, the chart directly 
proves the effectiveness of the proposed technical solution. 
For example, if a specific version of GraphRAG exhibits a 
notable WER reduction compared with the previous version, 
then the new features or optimization measures added to this 
version can be considered to have played a positive role. The 
histogram in Fig. 6 shows not only the final result, but also 
the effect of each stage on the overall optimization process. 
It can help determine the specific steps that are critical to 
improving overall performance and provides valuable 
information for future work. Low WER means high speech 
recognition accuracy, which is crucial for developing 
reliable voice interaction systems. These results demonstrate 
that advanced technologies, such as GraphRAG and AMDP, 
can be used to develop efficient and accurate speech 
processing solutions without sacrificing user experience. 

 

 
Fig. 7. Change trend of the model parameters with pruning depth 

 
The line chart in Fig. 7 depicts the process where the 

number of model parameters decreases as the pruning depth 
increases. It highlights the important role of the AMDP 
strategy in model light weighting. This process is conducive 
to the deployment of models on low-power hardware 
platforms and identifies potential improvements in 
computing speed. Small models are easy to deploy on 
devices with limited computing resources, such as mobile 
devices and IoT terminals. A decrease in the number of 
parameters usually means reduced computational complexity, 
which helps improve model inference speed, reduce power 
consumption, and extend battery life. As shown in Fig. 7, 
when the pruning depth gradually increased from none to 
light, medium, and deep, the number of model parameters 
showed an obvious downward trend. For example, from 
none to light depth, the number of parameters decreased 
from 10 million to around 9 million. From light to medium 
depth, the number of parameters continuously decreased to 
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around 8 million. From medium to deep, it decreased to 
around 6 million. 

 

 
Fig. 8. Comparison of the computing speed and memory usage of 
different model versions 

 
By combining model operation time and memory usage, 

the scatter plot in Fig. 8 shows the improvement in the 
efficiency and resource management of the different model 
versions. AMDP-GraphRAG achieved short computing time 
and low memory usage while ensuring low WER, revealing 
its advantages in the design of efficient speech recognition 
systems. The horizontal ordinate presents the different 
model variants, including GraphRAG v1, GraphRAG v2, the 
baseline, and AMDP-GraphRAG. The vertical ordinate 
shows the operation time and memory usage. 

Computing time analysis: The computing time of the 
baseline was roughly 50 ms. The calculation time of 
GraphRAG v1 was approximately 48 ms, which was shorter 
than that of the baseline. The operation time of GraphRAG 
v2 was approximately 45 ms, which was also shorter than 
that of GraphRAG v1. AMDP-GraphRAG had the shortest 
computing time among all the models. Specifically, its 
computing time of 40 ms was about 5 ms shorter than that of 
GraphRAG v2, 8 ms shorter than that of GraphRAG v1, and 
10 ms shorter than that of the baseline. 

Memory usage analysis: The memory usage of the 
baseline was about 500 MB. The memory usage of 
GraphRAG v1 was 450 MB, which was slightly lower than 
that of the baseline. The memory usage of GraphRAG v2 
was around 400 MB, which was also lower than that of 
GraphRAG v1. AMDP-GraphRAG had the lowest memory 
usage among all the models. Its memory usage of 350 MB 
was about 50 MB lower than that of GraphRAG v1, 100 MB 
lower than that of GraphRAG v2, and 150 MB lower than 
that of the baseline. 

AMDP-GraphRAG showed obvious advantages in 
terms of calculation time and memory usage. While ensuring 
low WER, it considerably reduced the computing time and 
memory usage, making it highly competitive and useful for 
the design of efficient speech recognition systems. It is 

suitable for application in resource-constrained 
environments and improves the overall efficiency and 
performance of the system. 

 
 

5. Conclusions 
 
To explore speech recognition model compression and 
optimization methods and substantially reduce model size 
and complexity, this study combined model improvement 
comparison and experimental work to analyze a GraphRAG 
speech recognition method that is based on AMDP on the 
premise of retaining the core performance of the original 
model. The following conclusions were obtained.  

(1) AMDG-GraphRAG achieved short computing time 
and low memory usage while ensuring low WER. WER with 
and without graph information was 8% and 10%, 
respectively. The memory usage of the baseline was about 
500 MB, and the memory usage of AMDP-GraphRAG was 
350 MB, which was the lowest among all the values. 

(2) The AMDP-GraphRAG model could maintain or 
improve recognition accuracy while reducing the number of 
parameters. The parameter volumes of the baseline and 
AMDP were 120 and 10 million parameters, respectively. 
The WER of the baseline was 3.5%, and that of AMDP-
GraphRAG was 2.8% (the lowest among all the WERs). 

(3) Graph information could also enhance the 
generalization ability of the model. The models with graph 
information could adapt quickly and improve recognition 
accuracy.  

The study demonstrated that AMDP-GraphRAG has 
obvious advantages in performance optimization, 
recognition accuracy, computing time, and memory usage. 
While ensuring low WER, it considerably reduces 
computing time and memory usage, making it highly 
competitive and useful for the design of efficient speech 
recognition systems. Moreover, it is suitable for application 
in resource-constrained environments and can improve the 
overall efficiency and performance of the system. The 
GraphRAG method focuses on the retrieval and generation 
of text information, but in practical applications, speech 
recognition often needs to be combined with other modal 
information, such as images and videos. Therefore, how to 
effectively integrate multimodal information and improve 
the multimodal understanding and generation capabilities of 
the model is an important direction for future research. 

 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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