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Abstract 
 

This evaluation explores the utility of specific methodologies, particularly Geographic Information System (GIS) and 
Remote Sensing (RS), in the near real-time assessment of drought conditions across regions. The investigation focuses on 
comparing Remote Sensing Derived Drought Indices (RSDIs) with the Standardized Precipitation Evapotranspiration Index 
(SPEI) for the period 2001–2023. The RSDIs, including Vegetation Condition Index (VCI), Temperature Condition Index 
(TCI), and Vegetation Health Index (VHI), are computed utilized MODIS data through Google Earth Engine (GEE) 
platform. To assess the efficacy of these indices, correlation analyses are conducted between VCI, TCI, VHI, and the 
Standardized Precipitation Index (SPI). Pearson correlation coefficients (CC) are employed to quantify the agreement 
between SPEI and RSDIs. Results indicate varying levels of agreement, with higher correlation observed between VCI and 
SPEI across different time scales (12, 9, 6, 3, and 1 month). Conversely, TCI demonstrates comparatively lower agreement 
with SPEI. Moderate correlation is noted between VCI and SPEI across different time scales. These findings suggest that 
VHI and SPEI exhibit stronger correlation, making them preferable for drought monitoring in regions with limited 
meteorological data Using the VCI, TCI, and SPEI, one can determine the drought in the Guntur district. The VCI 
geographical distribution maps show that the year of extreme drought conditions was observed in 2001, 2003, 2005, 2007, 
2011, 2016, and 2019. However, conditions recovered in the subsequent years, with a relatively mild drought. Furthermore, 
the study reveals a persistent presence of drought across the study area throughout the analysed period. This research 
contributes to enhancing our comprehension of the interrelationships among Weather and remote sensing-based drought 
indices. 
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1. Introduction 
 
Due to its complex nature, drought is difficult to accurately 
monitor and assess at the outset, severity, frequency, 
persistence, and transmission, particularly in hyper-arid 
locations where data is scarce [1]. Drought is a common hydro 
meteorological occurrence that produces disasters and is the 
second leading source of social and economic instability, 
behind floods [2]. Based on the industries impacted, drought 
occurrences are divided into four groups [3] meteorological, 
hydrological, agricultural, and socioeconomic droughts. A 
long-term period of below-average precipitation in 
comparison to the mean rainfall in the area is indicative of a 
meteorological drought. Crop aridity occurs when earth 
wetness levels fall below what is necessary for plant 
maturation and enhancement [4]. A hydrological drought 
occurs when there is inadequate precipitation for a protracted 
time, resulting in a reduction in both surface and groundwater 
levels [5]. Socio-economic strain examines the impact of dry 
spell on hydrological resources, cultivation, and industry.  
 Droughts have been monitored and statistically described 
by several ways, including standardised and custom indices 
used in climate science, hydrology, and farming [6]. 
Previously, aridity observation relied on earth bound 
measures from stations , gauges, such the Palmer Drought 
Severity Index (PDSI), SPI, and SPEI work flow formation of 

the identifying the nature. Traditional drought monitoring 
relies on erroneous and limited in-situ precipitation records 
[7, 8]. The poor allocation of in situ meteorological centres 
and accompanying inconsistencies make it difficult to 
accurately estimate drought in Dry and extremely dry areas. 
Native barriers like hills and sand fields which include to the 
situation [9]. El Kenawy and McCabe [10] verified 
weaknesses in the weather centre network across the 
Kingdom of Saudi Arabia (KSA). Progress in RS and earth 
observation methods, such as the NASA Landsat series 
launched in 1972, have transformed drought monitoring [11]. 
Rising temperatures have sparked more interest and 
awareness of climate change. Geospatial experts believe 
remote sensing is vital for assessing ecosystem conditions and 
monitoring significant climate changes on both spatial and 
time-related dimensions [12]. 
 Remote sensing (RS) devices monitor several factors at 
the earth's surface, including plant health and water 
availability, providing contextual data for drought monitoring 
[13]. Satellite imagery (RS) and GIS enable monitoring and 
analysing changes in the globe over time  RS and GIS 
approaches provide continuous data across wide areas, 
addressing data scarcity challenges in desert places such as 
Saudi Arabia [14]. 
 GEE, a cloud-based service by Google, allows users to 
compute and visualize raw and processed geospatial data 
from satellite sources. Since its release in 2010, engine tool 
has been extensively utilized for hydro-meteorological 
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purposes and has been particularly effective in applications 
such as vegetation mapping and monitoring [15]. With a 
significant amount of publicly accessible satellite images and 
integrated picture processing, tool has been nominated in 
numerous studies conducting examination of drought through 
temporal data . Researchers predominantly used the landsat 
satellite dataset with earth tool algorithms for drought 
monitoring through RSDIs. During this time, Pham and Tran 
investigated how droughts were distributed chronologically." 
by calculating various drought indices from Landsat (L) 
observation information using the earth infrastructure [16]. 
Benzougagh employed algorithm and a blend of L8 and S-2 
data collection to survey drought in Morocco. These indicated 
that LDI offer significant spatial insights for assessing aridity 
status at regional and national scales [17]. The objective is to 
tackle facts technical matters in the Lith watershed, where the 
existing measures fail to capture climate variability. The 
correlation gap between the Standardized Precipitation 
Evapotranspiration Index (SPEI) and Rainfall Severity 
Drought Indices (RSDIs) was assessed using Pearson 
Correlation Coefficient (CC) metrics for the Guntur district 
from 2001 to 2023, as detailed in Table 2. The analysis 
revealed that the Vegetation Condition Index (VCI) and 
Vegetation Health Index (VHI) exhibited a strong correlation 
with SPEI, each achieving a CC of 0.89 during the study 
period. Additionally, TCI and VHI demonstrated a moderate 
correlation with each other, with a CC of 0.46. In contrast, the 
correlation between VCI and TCI was relatively weak, with a 
CC of 0.27. The correlation between SPEI and RSDIs across 
various temporal intervals (1, 3, 6, 9, and 12 months) 
indicated that SPEI-3 had a robust relationship with VCI, 
showing a CC of 0.60. Conversely, VCI showed a lower 
correlation with SPEI-1 (CC = 0.29) and a further reduction 
to 0.15 with SPEI-9. TCI demonstrated a weaker correlation 
with SPEI, with the highest CC of 0.19 observed between TCI 
and SPEI-1 and the lowest CC between TCI and SPEI-12. No 
additional objectives were identified in this context. 
Accordingly RST were used to address lack of data, and 
various remote sensing indices were computed using platform 
[18]. 
 Throughout the years, numerous DI have emerged to 
gauge and calibrate desiccation in the land-based aspect of the 
hydro cycle. These validations split into three main types of 
drought. Characterized by extended periods of subpar 
precipitation, meteorological droughts are often measured 
using the SPI, based on the concept that dehydrations are 
evaluated compared to the mean environmental and its 
variability at a specific location [19]. These MD can progress 
into hydrological droughts, feature average water elevation or 
river current were typically assessed using storage basin, the 
SRI, or the Stream flow Index. Soil moisture deficiency 
characterizes agricultural droughts. Although only a few 
studies clearly define it, they concur that agricultural drought 
involves a deficit in soil moisture substantial to disrupt flora 
expansion, farming output, or Harvest production. Various 
other definitions are also present. These definitions also 
connect soil wetness content to the state of crop health. 
Because of link to farming production and irrigation, AD 
frequently becomes the central Concentration on drought 
surveillance and prognostication. In accordance with crop 
droughts have typically measured based on soil dampness in 
the zone region [20]. 
 The widely used Palmer Drought Severity Index (PDSI), 
referenced in numerous studies calculates a basic water 
budget from monthly precipitation and potential 
evapotranspiration figures. It employs optimized parameters 

to ensure that comparable pdsi values result in similar effects 
on greenness and harvest yield, regardless of atmospheric 
variations.  Terrestrial surface models developed for pan 
African -scale applications provide physics-based choice to 
PDSI, allowing incorporation of local soil and vegetation 
properties [21]. Utilizing accessible orbiter scrutiny of 
vegetation indices such as normalized difference vegetation 
index (NDVI), enhanced vegetation index (EVI), solar-
induced chlorophyll fluorescence (SIF), fPAR, near-infrared 
reflectance of vegetation (NIRv), and  other research has 
concentrated on employing these parameters to measure AD. 
Similarly, two separate indices have been developed for 
monitoring agricultural drought: one centred on soil moisture 
(SMDI) and the remaining deficits in ETDI. Otherwise have 
explored alternative combinations—such as precipitation, 
PET, and SM —to quantify agricultural drought [22]. The 
current understanding of agricultural droughts, as previously 
defined—a soil content shortfall sufficiently severe to hinder 
greenery —suggests that a single index cannot adequately 
capture either its cause (soil moisture deficit) or its effect. 
While both SM and VBI aim to quantify Farming dry spell, 
the relationship between SM and foliage exhibits significant 
Intricacy and unpredictability [23]. 
 The Complication became recognized as early as the late 
nineteenth century when it was mentioned that a drought 
intricate impacting outcome influenced by several factors 
[24]. While aggregate indices have been suggested a solution 
navigate the complex relationship between SM and VY, it 
remains debated whether a single normalized index can 
effectively quantify agricultural drought and its impacts 
across diverse climate gradients. At scales ranging from small 
to continental, distinct soil moisture regimes influenced by 
both water and energy constraints can be identified, often 
described by a bilinear relationship between soil moisture and 
the evaporative ratio [25].  Beyond the critical moisture 
content threshold in soil, which represents an absolute value 
of SM, both transpiration and plant function remain 
unaffected by precipitation deficiency. In humid climates, 
periods of meteorological drought can paradoxically increase 
incoming solar radiation, potentially boosting 
evapotranspiration and resulting in despite relatively dry 
weather, there are positive anomalies in vegetation indices 
compared to typical conditions [26]. 
 Various drought indices, such as the Normalised 
Difference Vegetation Index (NDVI), Temperature Condition 
Index (TCI), Vegetation Condition Index (VCI) [27], and 
VHI , have been proposed  evaluated using remote sensing 
and GIS.TCI, VCI, and VHI are sometimes referred to  
greenness metrics are represent the flora status in a given 
region, categorise focused distinct dehydration, frequently 
used in DMI  [28]. CCI is commonly employed to determine 
vegetation varies from considerably bad better situations [29]. 
TCI identifies flora stress caused by extreme hot and excess 
wetness [30]. The Role of TCI and VCI in Formulating the 
Vegetation Health Index (VHI) [31]. 
 Due to limited data availability and minimal application 
of Remote Sensing (RS), Geographic Information Systems 
(GIS), and Google Earth Engine (GEE) in drought assessment 
for the Guntur district, this study seeks to achieve the 
following objectives: (1) To determine the spatial extent of 
drought in the Guntur district using MODIS satellite datasets 
spanning from 2001 to 2023. (2) To utilize MODIS data to 
extract precipitation, temperature, Land Surface Temperature 
(LST), and Normalized Difference Vegetation Index (NDVI), 
and subsequently compute the Standardized Precipitation 
Evapotranspiration Index (SPEI) for 1, 3, 6, 9, and 12-month 
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periods. This will facilitate the characterization of 
spatiotemporal drought patterns using SPEI, Vegetation 
Condition Index (VCI), Temperature Condition Index (TCI), 
and Vegetation Health Index (VHI) within the GEE platform. 
(3) To evaluate the efficacy of various drought indices, 
particularly comparing the SPEI with Rainfall Severity 
Drought Index (RSDI), by calculating the Pearson correlation 
coefficient (CC). The results of this study will aid urban 
planners and environmental scientists in devising strategies 
and policies to alleviate drought conditions in the Guntur 
district and similar regions worldwide 
 
 
2. Study area 
 
As seen in Figure 1, the study focuses on the Guntur district 
of Andhra Pradesh, India. It is bordered by the Bay of Bengal 
to the southeast, Bapatla District to the south, Palnadu District 
to the west, NTR District to the northwest, and Krishna 
District to the northeast. It covers an area of approximately 
2,443 Square km² (943 mi²) and is located between 
16.314209° N latitude and 80.435028° E longitude, namely at 
16° 18' 51.1524" N and 80° 26' 6.1008" E. The Environmental 
in this area is tropical, with an average annual temperature of 
28.5°C (83.3°F) and an average annual rainfall of 905 mm (36 
in). Using sensing and GIS tools, the study focuses on drought 
monitoring in the coastal area. This region has a variety of 
droughts, including severe, moderate, and average droughts. 
 

 
Fig. 1. location of the Area 
 
 
3. Methodology 
 
The approach adopted in this analysis is segmented into: (i) 
satellite data retrieval, (ii) drought monitoring using RSDI 
(VCI, TCI, and VHI) , Sequential and geospatial analyses of 
the metrics using GEE (iii) Correlation Analyses Figure 2 
illustrates the procedure for this investigation. 
         
 

 
Fig. 2. Analysis of work flow of Drought Monitoring  
 

 This study uses MODIS satellite data to track vegetation 
conditions and assess agricultural dryness from 2001 to 2023. 
Precipitation data is obtained from the CHIRPS pentad data 
for the relevant years. MOD11A2 provides data on land 
surface temperature (LST), whereas MOD13Q1 provides data 
on normalised difference vegetation index (NDVI), both at 
various geographical resolutions. Maximum NDVI and LST 
products are developed to account for a variety of parameters 
such as solar elevation angle, observation angle, orbit drift, 
clouds and shadows. Temperature data is obtained using LST, 
and the Vegetation Condition Index (VCI) is produced using 
NDVI, representing crop health throughout the research 
period. The SPEI (Standardised Precipitation 
Evapotranspiration Index) tool is used to calculate SPEI 
values for 1st, 3rd, 6th, 9th, and 12th months. Time series analysis 
is performed on the Google Earth Engine (GEE) platform to 
monitor trends over time, and relationships between SPEI and 
drought indicators are investigated. Finally, the research 
assesses drought conditions in the Guntur area. 
 
3.1 Standard Precipitation Evapotranspiration Index 
(SPEI) 
For monitoring drought conditions, the most extensively used 
drought index is the standard precipitation index, which 
created McKee et al, spatial resolution of 0.5◦ lat/lon, and 
temporal coverage from January 1901 to December 2011 by 
use of the Climate Research Unit (CRU TS3.2). It combines 
temperature and precipitation information to give a complete 
picture of the amount of moisture present in a certain area. 
The Standardized Precipitation Index (SPEI) is based on the 
standardized precipitation index (SPI), but it takes 
evapotranspiration as a factor to adjust for the impact of 
temperature on drought conditions. Understanding and 
managing drought risk is made possible by the SPEI, which 
is a useful tool for comparing drought severity across climatic 
zones and regions due to its standardization of results. 
Meteorologists, climatologists, hydrologists, and 
policymakers frequently use it to quantify drought severity, 
track drought patterns, and guide choices on water 
management. The SPI has been calculated using monthly 
temperature and precipitation data for the years 2001–2023. 
Software that uses observed monthly data to automatically 
calculate the SPI value in order to identify historical droughts 
at time span of 1, 3, 6, 9, and 12 months. 
 Each state allows for the estimation of SPEI at several 
time frames, including 1, 3, 6, 9 and 12 months. The monthly 
temperature and precipitation are used to compute SPEI-1. By 
changing the average of the three months' worth of 
temperature and precipitation data, SPEI-3 is computed. The 
residual 6-, 9- and 12-month indices may be computed in a 
similar manner. While SPEI-3 and SPEI-6 are often  to track 
annual fluctuations in drought, SPEI-1 is helpful for 
examining temporary fluctuations in drought occurrence and 
intensity , while SPEI-12 is helpful for examining yearly trend 
in drought. The parameter, which contrasts actual rainfall 
with the volume of water wastage via transpiration and 
volatilization during a specific time period, can be used to 
determine assessing drought severity using the numeric 
values of SPEI, it segmented were various types according to 
McKee, as illustrated in Table 1. 
 
 
Table 1. Classification of drought severity using SPEI values. 

SPEI Divisions 
>2 Saturated condition 

1.50 to 1.99 Severely wet 
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1.00 to1.49 Fairly  wet 
−0.99 to 0.99 Nearly Normal 
−1.49 to −1.0 Moderately drought 
−1.99 to −1.5 Severe drought 

 
3.2 Vegetation Condition Index : 
NDVI has long been a valuable tool for monitoring 
vegetation, but its applicability across different ecosystems is 
limited. To overcome this, the Vegetation Condition Index 
(VCI) has emerged as a more comprehensive measure, 
capturing the combined effects of rainfall, soil moisture, 
weather, and agricultural practices on vegetation health. 
Particularly in regions like AP with diverse topography and 
ecosystems, VCI is essential for comparing weather impacts 
across areas with varying resources. Unlike NDVI, VCI 
excels in capturing dynamic rainfall patterns, especially in 
geographically diverse regions. Throughout the cultivation 
period, VCI is a reliable indicator of plant health and moisture 
stress, though it loses effectiveness outside this period. Its 
global adoption underscores its significance, as it sensitively 
detects stressors like insect infestations, diseases, and nutrient 
deficiencies. For the calculation of the Vegetation Condition 
Index (VCI), MODIS satellite data from 2001 to 2023 for the 
Guntur district was utilized within the Google Earth Engine 
(GEE) platform. Initially, the shapefile of the study area was 
imported into GEE. The workflow involved loading the 
MODIS NDVI dataset, followed by scaling the NDVI values 
to their original range. The target year and month were 
specified to filter the NDVI dataset accordingly. 
Subsequently, the maximum and minimum NDVI values for 
the selected month across all years were calculated and 
visualized. The NDVI for the specified year and month was 
then filtered and displayed. The VCI was computed using 
these NDVI values. To automate this process, a function was 
defined to calculate the VCI for all images in the dataset, 
which was then applied to generate a comprehensive VCI 
image collection for the entire period. VCI values, ranging 
from 1 to 100%, categorize vegetation conditions from 
extremely low to high, with values between 50 and 100% 
indicating ideal conditions and values nearing zero 
representing severe dry seasons. For each annually and 
seasonal NDVI image, VCI will be processed from 2001 to 
2023 using the GEE platform .The following expression 
demonstrates the calculation of VCI [21]: 
  
VCI =			!"#$%&''()*+!"#$,-)	

!"#$,/0+!"#$,-)	
 X 100                                             (1) 

 
 
4. Results 
 
4.1 Assessment of the SPEI Indices 
In Guntur district’s (GD) drought severity and conditions 
from 2001 to 2023 have been comprehensively analysed 
using both geographical and temporal scales. This analysis 
employs the Standardized Precipitation-Evapotranspiration 
Index (SPEI) across multiple timescales—1, 3, 6, 9, and 12 
months—as well as remote sensing drought Indices (RSDIs), 
including the Vegetation Condition Index (VCI), 
Temperature Condition Index (TCI), and Vegetation Health 
Index (VHI).The findings, illustrated in the accompanying 
figure 3, show that the SPEI-6, SPEI-9, and SPEI-12 indices 
are particularly effective in identifying moderate drought 
events. These indices provide a more nuanced detection of 
drought conditions compared to the SPEI-1 and SPEI-3 
indices, which generally reflect nearly normal conditions. 
This suggests that longer timescale indices are more sensitive 

and reliable for monitoring drought severity in this region. 
Furthermore, the time sequence analysis for the period 
indicates that drought events in 2001 and 2002 were 
characterized by normal to moderate severity. This detailed 
temporal analysis helps in understanding the patterns and 
frequency of drought occurrences over the 22-year period, 
providing valuable insights for water resource management 
and agricultural planning in the GD. 
 

 
Fig. 3. SPEI graph  
 
4.2 VCI  
The Vegetation Condition Index (VCI) for Guntur district, 
which is calculated from the Normalised Difference 
Vegetation Index (NDVI), is shown in Figures 4 and 5 for the 
years 2001 to 2023. Extreme drought conditions were 
recorded in 2001, 2003, 2005, 2007, 2011, 2016, and 2019, 
according to the VCI geographical distribution maps (Figure 
4). On the other hand, the years 2004, 2006, 2008, 2009, 2012, 
2013, 2014, 2015, 2018, 2022, and 2023 saw wetter 
circumstances with comparatively medium drought. It's also 
important to note that some parts of the Guntur district are 
experiencing a comparatively greater level of drought. 
 
 

 
Fig. 4. Visualizing the VCI time line in GD derived from GEE data. 
 
 
 The analysis period's mean VCI values vary from 0.1 to 
0.8, as demonstrated by the sequential data of VCI acquired 
using the earth engine (Figure 5). The Guntur district recorded 
minimal VCI values (severe and extreme drought phases) in 
the first ten years, 2001, 2003, 2011, and 2022, as reflected in 
the VCI chronological plot. In the same way, the following 
years show the lowest VCI values for the second decade: 
2002, 2007,2010,2013,2015, and 2019. Put differently, the 
VCI time series shows that the years 2004, 2006, 2010, 2016, 
2015, and 2018 were marked by a severe drought .As which 
shown in figure4 the results which indicates the VCI map 
using modis satellite which are acquired in google earth 
engine, by using vegetation condition indicates by using the 
colour combination which the red colour which indicates the 
more drought is occurred in that particular year and that area 
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more over the research which identified the which area 
drought is to be occurred. 
  
4.3 Correlation between SPEI, VCI, TCI, and VHI 
The relationship between the SPEI and RSDIs is assessed 
through the Pearson Correlation Coefficient (CC) metrics was 
evaluated for Guntur district of 2001 to 2023 which were 

represented in Table 2. The indices VCI and VHI 
demonstrated a strong correlation with SPEI, each showing a 
CC value of 0.89 during the study period. Additionally, TCI 
and VHI exhibited a reasonable correlation with each other, 
with a CC worth of 0.46. However, the association among 
VCI and TCI was notably lower, with a CC value of 0.27. 

 

Fig. 5. (a–w) Spatial allocation of VCI in Guntur extracted from Modis Space station span of 2001–2023. 
 
 
Table 2. GEE-Based Linkage table of RS AND MD Indices 

 TCI VCI VHI SPEI-1 SPEI-3 SPEI-6 SPEI-9 SPEI-12 
TCI 1.000000 0.27700 0.460880 0.19 0.18 0.12 0.13 0.07 
VCI 0.27700 1.000000 0.892479 0.29 0.60 0.16 0.15 0.24 
VHI 0.460880 0.892479 1.000000 0.22 0.24 0.25 0.26 0.27 
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 Further analysis extended the investigation of the link 
amid SPEI and RSDIs over different temporal intervals (1, 3, 
6, 9, and 12 months). The Outcome, shown in Table 2, 
indicate that SPEI-3 had strong Connection to VCI, where CC 
value of 0.60. VCI also exhibits a lower correlation with 
SPEI-1 (CC = 0.29), which significantly drops 0.15 with 
SPEI-9. Conversely, TCI shows a lower interrelation with 
SPEI, with the highest and lowest CC values found between 
VCI/SPEI-3 and TCI/SPEI-12, respectively. The greatest 
coherence for TCI, with a CC of 0.19  is intervening TCI and 
SPEI-1, Sequentially, TCI and SPEI-3.Table 2 reveals that the 
Connection between VHI/VCI/TCI and SPEI. Elevates 
including longer SPEI time frames. The Determinations for 
VHI, TCI, and VCI use yearly records yet plant growth is 
influenced by the soaked or dry environments of both the 
current area of yearly and the previous years of greenery 
expansion. Consequently, the crop growth patterns and health 
indicator are attentively linked to wet or dry conditions over 
extended period of time. Therefore, VHI, TCI, and VCI, 
which are closely related to metrics, frequently show a greater 
association with SPEI over a longer period of time. 
 
4.4 TCI  
The Temperature Condition Index (TCI) is utilized as a 
measure to gauge the influence of temperature on vegetation 
health, often within the context of agricultural monitoring and 
environmental studies. It is part of a broader system of 
indices, VCI and the VHI, which help in evaluating vegetation 
stress due to climatic conditions. The tci posits that droughts 
decrease soil moisture and elevate land surface thermal stress, 
resulting in higher land surface temperatures (LST) during 
aridity span compared to conditions. Elevated LST during 
crop growth seasons indicates Adverse or arid conditions, 
while lower LS temperatures suggest predominantly 
advantageous conditions. TCI correlates with vegetation's 
sensitivity to adverse temperature changes. TCI measures the 
deviation of the current temperature from the optimum 
temperature conditions for vegetation growth. High TCI 
values indicate favourable temperature conditions for 
vegetation, whereas low TCI values suggest adverse 
temperature conditions, such as extreme heat or cold. The 
following expression demonstrates the calculation of TCI 
[20]: 
 
TCI=		 	1!"#+2

	1!"#+1!$%
		× 100		                                                                     (2) 

 
 Where t= Existing temperature,	𝑇,/0 =Maximum 
temperature observed over a specific period (usually a 
growing season or year, 𝑇,-)	=Minimum temperature 
observed over the same period 
 

  
Fig. 6. Analyses of TCI in GD 
 
 Figures 6 show the time frames of TCI in the GD 
encompassing a span of 2001–2023 taken Modis data and 

earth platform, correspondingly. TCI is derived from 
temperature and represents an amalgamation of various 
factors such as vegetation, precipitation, topography, 
elevation, soil, and meteorological conditions. , along with 
thresholds for different drought conditions (Extreme Drought, 
Severe Drought, and Moderate Drought). Across various 
years, the mean TCI values exhibit variability 0.32 to 0.50 in 
the study area. Monitoring such trends helps in understanding 
the impact of temperature on growth and planning for 
agricultural and environmental management accordingly. 
 
 
5. Conclusion  
 
The study emphasizes the significance of RS approaches are 
for monitoring and assessing drought conditions in a variety 
of locations in near real time, this assessment provides of 
drought conditions in the Guntur district of Andhra Pradesh, 
India, for the years 2001–2023, by contrasting Standardised 
Precipitation Evapotranspiration Index (SPEI) with Remote 
Sensing Derived Drought Indices (RSDIs) like the Vegetation 
Condition Index (VCI). The TCI values, ranging from 0.32 to 
0.50, reflected fluctuating thermal stress on vegetation, 
underscoring the region's vulnerability to extreme 
temperature conditions. The strong correlation between VCI 
and short-term Standardized Precipitation Evapotranspiration 
Index (SPEI) intervals suggests that vegetation responds 
quickly to changes in moisture availability, making these 
indices valuable for real-time drought monitoring. However, 
the study's reliance on MODIS satellite data, with its 
moderate spatial resolution, and the absence of ground-based 
meteorological validation, are limitations that may affect the 
precision of the findings. Despite these constraints, the 
research demonstrates the potential of remote sensing 
technologies in enhancing drought monitoring and 
management in regions like Guntur, where agriculture is 
heavily dependent on climatic conditions. This methodology 
aligns with global drought assessment standards, using 
remote sensing technologies and indices like VCI and TCI, 
known for their effectiveness in monitoring large areas over 
extended periods. This approach is scalable and applicable to 
other drought-prone regions globally. However, its 
effectiveness could be enhanced by integrating higher-
resolution satellite imagery and ground-based data for 
improved accuracy. This study’s methodology contributes to 
global efforts in developing resilient agricultural practices 
and improving drought mitigation. Refining these methods 
will provide policymakers and resource managers with 
essential tools to protect food security and water resources in 
vulnerable regions. Red implies greater drought, while green 
shows that the vegetation is in excellent condition. The 
correlation between SPEIs month intervals and RSDIs 
showed strong agreement for VCI/SPEI-3 and VCI/SPEI-1, 
with average CC values of 0.60 and 0.29 consecutively. A 
lower correlation was noted among SPEI and VHI, having 
maximum CC value of 0.27 approximated within VHI and 
SPEI-12, and 0.22 between VHI and SPEI-1. Additionally, a 
moderate correlation was noted in TCI and SPEI. The results 
support the wider use of these innovative tools in regions of 
the world that are vulnerable to drought, since this will enable 
more robust and flexible responses to drought conditions.  
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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