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Abstract 
 

Nowadays, deep learning is an emerging technique used in many research domains. The recommender system, specifically 
collaborative filtering, has significantly improved its performance by deploying this technique. Neural collaborative 
networks and their related neural network models are the bench- mark models in this domain. However, these models do 
not exhibit to create a continuous, robust, and structured latent space like autoencoder. On the other hand, autoencoder does 
not perform well in sparse data like Movielens. This article proposes a variational autoencoder based movie 
recommendation system (VAEMRS) to handle the above issues. In our proposed model, we consider implicit data like click 
vectors, normalize the interaction matrix, and pass them to the dropout layer to learn the VAE. Further, our approach applies 
variational concepts in neural networks. Also, use multinomial likelihood and Bayesian inference for parameter estimation. 
The proposed model has been tested using different quality measures on open-source datasets such as Movielens and 
compared with baselines. The performance results of the proposed work show the superiority over the baselines. 
 
Keywords: Collaborative Filtering, Deep learning, Auto-encoder, Variational inference, Bayesian 
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1. Introduction 
 
Recommender Systems (RecSyss) is a tool that predicts and 
suggests products or things to clients/users (i.e., movies to 
users, online out- comes to customers, services to industry, 
etc.) [1]. Netflix, Amazon, Flip-kart, Spotify, etc., are the 
popular RecSyss. RecSyss are categorized according to their 
filtering mechanism, which is content- based [2] and 
Collaborative Filtering (CF)[1], [3-4]. CF is the most widely 
used and accurate filtering technique in the recommender 
domain. There have been several types of CF models 
developed over time, including the Probabilistic Matrix 
Factorization (PMF) [5], the K-Nearest Neighbors (KNN), 
the Non-Negative Matrix Factorization (NMF) [5], and the 
Bayesian NMF (BNMF). Deep learning (DL) is an emerging 
research approach that per- forms better than machine 
learning-based matrix factorization (MF) techniques [6]. 
Also, DL frame- works offer more flexibility than MF 
techniques, allowing for the integration of shallow and deep 
learning [7], as well as integrating auxiliary con- tents [8], and 
generative techniques [9-10], among others. Deep Matrix 
Factorization (DeepMF) [11] implements the popular MF 
concept through a neural network model. Current DeepMF 
implementations use two embedding layers with user and 
item inputs based on a matrix with explicit ratings and non-
preference implicit feedback. The results of the experiments 
confirm the superiority of DeepMF over matrix factorization-
based RS [11-12] models such as NMF, BNMF, and PMF. 
The DeepMF framework has also been employed in the 
recommender domain to com- bine social behaviors (ratings 
and clicks) with images. It has also been used to retrieve 
features from the interaction matrix to enhance the 
initialization accuracy of social trust in RS. NCF, though not 

widely spread, can be viewed as a deepened DeepMF model, 
in which deeper layers are replaced with the ’Dot’ layer, and 
the ’Dot’ layer is replaced with a ’Concatenate’ layer. How- 
ever, NCF produces better results than DeepMF. At the same 
time, it increases the running time needed to train the model. 
Variational AutoEncoders (VAEs) work like regular 
autoencoders. The encoder networks use latent space to 
compress raw data into latent representation, while decoder 
networks decompress from latent representation to output 
data. A key difference between VAEs and classical 
autoencoders is how the latent space is designed, explained, 
and operated. VAEs learn continuous and structured latent 
spaces through statistical processes, unlike traditional 
autoencoders. VAEs transform samples into statistical 
distribution parameters, typically the variance and mean of a 
Gaussian distribution [13]. According to Bobadilla et al. [13], 
the AE and VAE differ in the way to represent the latent space 
due to stochastic. This improves the robustness of the latent 
space representation and forces it to be continuous and 
meaningful. VAEs are considered generative models because 
of these properties in image processing. With a VAE [14], the 
latent space of Gaussian distribution parameters has been 
parameterized, allowing for the reconstruction of a multi-
spectral image. According to Liu et al. [15], super-resolution 
images can be created with the help of VAEs. Zhang et al. 
[16] propose a flexible AE model that can adapt varying data 
patterns with time. Multiple papers have used VAEs as a 
model to improve RS results by importing the concept from 
image processing. For example, Liang et al. [17] tested 
denoising and VAEs and reported that the VAE performs 
better among other models. Similarly, Mohan and Nisha [18] 
combined social information with VAEs to enhance the 
quality of the RS. In this article, we assume that ratings or the 
interaction values can be better estimated when an 
autoencoder learnt latent space variationally, as the latent 
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space is more robust and covers a wider latent area. In 
contrast, the traditional AE encodes each example as a value. 
Whereas VAE encodes each sample of a multivariate 
distribution. Random sampling is carried out from the 
distribution to extract the stochastic latent space values. Each 
epoch generates a new set of latent values in the training 
process. When a (user, item) tuple is provided to the proposed 
approach after it has been trained, the generated latent space 
value can be predicted more accurately in the VAE than in the 
regular autoencoder.  
 
 
2. Related work 
 
Variational autoencoders (VAES) [19,20] have been widely 
used in images. Doersch [21] studied various applications of 
VAE. In contrast, Miao et al. [22] presents a review of VAES 
on text data. The outcomes from Krishnan et al. [23] show 
that variational autoencoders suffer from under-fitting when 
modeling sparse, large, and high-dimensional data. Similar 
drawbacks were found while fitting VAE without annealing 
or annealing to β = 1. 
 According to Meila et al. [24], and Liang et al. [17], the 
regularization of the ELBO achieves maximum entropy 
discrimination. Therefore, ELBO attempts to incorporate 
Bayesian inference with discriminative estimation in a 
generative model. Alemi et al. [25] describe achieving 
maximum entropy discrimination with Bayesian inference as 
an information-theoretic connection. The researchers explore 
the deep variational information as a bottleneck and is a 
variational approximation of information bottleneck principle 
[26]. Also, they found that this is a special case while 
recovering the learning objective of VAEs. Further, the 
researchers found a more robust classification technique with 
β < 1. Higgins et al. [27] explained β-VAE; they use β-VAE 
for obtaining learning disentangled representations of images. 
However, they effectively set β >> 1 on the latent space. 
Early investigation on CF recommender system using neural 
networks focus on explicit data and evaluates rating 
prediction [28 - 31]. However, the importance of implicit data 
has gradually been recognized, and became recent research, 
therefore our work has focused on it. Behera and Nain [12] 
have discussed the DeepNNMF a deep non-negative MF 
model to address the sparsity issue in collaborative filtering-
based RS. Further, the authors embedded metadata into the 
deep structure of neural networks to enhance the prediction 
task of the CF-based RS [32-33]. Jena et al. [34] proposed the 
neural model to recommend movies. Whereas the researchers 
did not consider any ranking measure while evaluating their 
model and did not consider coverage metrics and genome 
information.  
 Collaborative filtering models based on neural networks 
concentrate on explicit feedback information and assess their 
performance by predicting ratings [11, 39, 41, 54]. There has 
been a growing acknowledgment of the significance of 
implicit feedback, leading to a shift in focus to it in most 
recent research, including this study. Neural collaborative 
filtering (NCF) and collaborative denoising autoencoder 
(CDAE) [35] articles are closely related to this article.  
 The standard denoising autoencoder is enhanced in the 
collaborative denoising autoencoder (CDAE) [51] by 
incorporating a per-user latent factor into the input. The 
growth of the CDAE model's parameter count is directly 
proportional to both the number of users and the number of 
items, which increases its susceptibility to overfitting. In 
contrast, the parameter count in the VAE expands linearly 

with the number of items. Additionally, the CDAE requires 
extra optimization to acquire the latent factor for unseen users 
in order to make predictions. Rather than using the widely 
used dot product, NCF [14] investigate a model with non-
linear interactions between the user and item latent 
components. Using two small datasets, the authors show how 
NCF performs better than traditional baselines. The number 
of parameters in NCF increases linearly with the number of 
items and users, just like in CDAE. CDAE incorporates the 
classical denoising autoencoder (DAE) by including a latent 
factor per user. In their article, the researchers investigate the 
logistic like-likelihood loss and Gaussian function. On the 
other hand, NCF explores non-linear interactions between the 
user and item rather than traditional dot product. Vaishaniv 
and Kalpan [43] use machine learning technique for 
sentiment-based product recommendation. Dong et al. [46] 
developed a hybrid model with deep structure to tackle the 
data sparsity issue of CF. The hybrid model jointly learns the 
latent factors from auxiliary information and interaction 
matrix. Li and James [45] proposed a Bayesian generative 
model (CVAE) to handle a multimedia data. The CVAE 
model captures deep latent structures from content data and 
also learn implicit relationship between user-items. Nahta et 
al. [47] discussed a two-step hybrid variational model to 
address uncertainty of ratings. They computed latent 
representation dynamically through encoder. Further, they 
use generative process to handle sparsity problem of CF. 
Dervishaj and Cremnesi [48] proposed a generative adversial 
network (GAN) based MF to learn user-item latent vectors 
from rating matrix. Also, they train their model vector wise 
using autoencoder and generator and found that GAN based 
model outperform the traditional CF model.  
 
 
3. Dataset 
 
The MovieLens-20 million dataset used in this model was 
taken from the Movie-lens library [36]. The dataset primarily 
contains numerous sub- datasets, such as movie genome, 
genre, user-rated, movie links, and tag information. The 
movie rating dataset is the subset of data that we are using in 
our model. Since the user provided the ratings directly 
through any feedback channel, it is regarded as an explicit 
dataset. 
 
Data Preprocessing 
We use MovieLens 20M dataset, which contains 20 million 
ratings and 465, 000 tag applications applied to 27, 000 
movies by 138, 000 users. In the original data, there are 
20000263 rating events from 138493 users and 26744 movies 
(sparsity: 0.540%). Tab.1, shows the snippet of a dataset. The 
following steps are used in preprocessing. 

 
Table 1. Snippet of dataset 
 MovieId UserId Ratings Timestamp 
0 2 1 3.5 1112486024 
1 29 1 3.5 1113484676 
2 32 1 3.5 1113484819 
3 47 1 3.5 1112484727 
4 50 1 3.5 1113484580 

• For the VAEMRS algorithm, we only keep items that are rated by at 
least 50 users. 

• We binarize the data by setting ratings ≥ 4 as 1, and others equal to 
0. After filtering, 9868061 rating events are from 138287 users and 
7345 movies (sparsity: 0.972%). 

 
4. Proposed Work 
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This Section elaborates in detail about the proposed model 
(VAEMRS) as follows: 
First, we discussed the notations that are used for model 
building, such as i ∈ {1, · · ·, I} and u ∈ {1, · · ·, U} to denote 
the number of items and users respectively. Also, consider 
learning with implicit data. The interaction between the user 
and the item is the click (such as watch, listen, or purchase) 
matrix R ∈ NU×I. The lowercase ru = [ru1, · · ·, ruI ]T ∈ NI is a 
bag-of-words vector that includes number of clicks given by 
user u to each item i. Further, we normalize matrix R ∈ [0, 1] 
and pass it to the dropout layer before training the VAE. This 
means that the model will have to reconstruct the click vector 
as some elements from the input will be missing; hence, it will 
learn to predict the recommendation for a given click vector. 
Fig.1, illustrates the variational autoencoder for the movie 
recommender system. 
 

 
Fig. 1. Illustration of Variational Autoencoder for Movie Recommender 
System (VAEMRS). 
 
 Generative process: The model first samples a K-
dimensional latent representation xu from a typical Gaussian 
prior for each user. A non-linear function is used to transform 
the latent space xu into a probability distribution over I items 
π (xu), from which it is assumed that the click history ru was 
extracted and is displayed in Eq. 1. 
 
xu ∼ N (0, Ik), π(xu) ∝ exp{f0(xu)}, ru ∼ Mult (Nu, π(xu ))     (1) 

 
 The multilayer perceptron with parameters 𝜃 is 
represented by the non-linear function 𝑓!(⋅). A SoftMax 
function is used to normalize the transformation's output, 
resulting in a probability vector 𝜋	(𝑥") ∈ 𝑆#$% (an (I − 1) 
simplex) for the full item set. The observed bag-of-words 
vector 𝑥" is assumed to be sampled from a multinomial 
distribution with probability 𝜋(𝑥") given the total number of 
clicks 𝑁"	 = ∑ 𝑟"''   from user u. By fixing 𝑓!(⋅) to be linear 
and utilizing a Gaussian likelihood, we may recover classical 
matrix factorization [49], which is a generative model that 
generalizes the latent factor model. 
 
Variational Inference: Estimating 𝜃 (the parameters of 
𝑓!(⋅)) is what we are interested in learning about the 
generative model in Eq. 1. In order to achieve this, we must 
approximate the intractable posterior distribution 𝑝(𝑧"|𝑥") 
for each data point. Variational inference is what we use [22]. 
Variational inference uses a less complicated variational 
distribution,	𝑞(𝑧"), to approximate the genuine intractable 
posterior. We define a completely factorized (diagonal) 
Gaussian distribution	𝑞(𝑧") as follows: 
 
𝑞(𝑧") = 𝑁(𝜇", 𝑑𝑖𝑎𝑔{𝜎"(}) 

 
 The objective of variational inference is to optimize the 
free variational parameters {𝜇", 𝜎"(} so that the Kullback-
Leiber divergence 	𝐾𝐿(𝑞(𝑧")||𝑝(𝑧"|𝑥"))	is minimized. 
 The objective for VAEMRS for a single user is defined 
in Eq. 2. 
 
Lu(θ, ϕ) = log pθ(ru | gϕ(ru))        (2) 
 
Learning VAE: We can use variational inference to develop 
latent-variable models, and as usual, we can lower-bound the 
log marginal likelihood of the data. We aim to maximize the 
following for user u (the dataset's objective function is 
derived by averaging the objective function across all users): 
 
log 𝑝(𝑟"; 𝜃) ≥ 𝐸)*(𝑥"|𝑟")[log 𝑝!(𝑟"|𝑥")] −
𝐾𝐿(𝑞*(𝑥"|𝑟")|I𝑝(𝑥")J ≡ 𝐿"(𝑟"; 𝜃, 𝜙)     (3) 
 
 The evidence lower bound (ELBO) is the term used to 
describe this. Keep in mind that the ELBO depends on both 𝜃 
and 𝜙. By sampling 𝑧" ∼ 𝑞*, we can get an unbiased estimate 
of ELBO and optimize it via stochastic gradient ascent. The 
problem, though, is that this sampling procedure does not 
allow us to trivially take gradients with respect to 𝜙. This 
problem is avoided by using the reparameterization approach 
[24, 37]: we sample 𝜖 ∼ 𝑁(0, 𝐼+) and reparametrize 𝑧" =
𝜇𝜙(𝑟") + 𝜖 ⊙ 𝜎*(𝑟"). In this way, the sampling process's 
stochasticity is separated, and the sampled 𝑧" can be used to 
back-propagate the gradient with regard to 𝜙. Algorithm1 
summarizes the learning procedures of VAEMRS. 
 

Algorithm 1. Training Procedure of VAEMRS with 
SGD 
Require: Interaction Matrix R ∈ NU×I Ensure: 
Predicted score: yˆvj 
Initialize θ, ϕ randomly 
while not converged do Train a batch of U for all u ∈ 
U do 
sample ϵ ∼ N (0, IK) and compute xu 
Compute gradient ∇θL and ∇ϕL with 
xu 
end for 
Update ϕ and θ by taking SGD steps 
end while  
return θ, ϕ 

 
 Further, the ELBO specified in Eq. 3 can be seen as 
regularization in the second KL term, whereas (negative) 
reconstruction error can be seen in the first term. We employ 
this viewpoint because it enables us to make the trade-off that 
is the foundation of our approach. From this angle, it makes 
sense to expand the ELBO by adding a parameter 𝛽 to 
regulate the regularization's strength. 
 Although the original VAE (trained with ELBO in Eq. 3) 
is a potent generative model, one may wonder if problems in 
recommender systems require all of a generative model's 
statistical features. A trade-off is introduced between the 
degree to which we can fit the data and the degree to which 
the approximate posterior remains near to the prior during 
learning in the regularization view of the ELBO (Eq. 4).  
 
Lu (θ, ϕ) = Eqϕ (xu, ru) [log pθ (ru | xu)] − βKL (qϕ(xu | ru)|| p(xu))   (4) 
 
Selecting 𝜷: We inspired from KL annealing [51], a heuristic 
method for training VAEMRS. According to the liang et al 
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[17], when the 𝛽 value is gradually increase from 0 to 1, the 
annealing KL terms slowly over a large number of gradient 
updates to 𝜃, 𝜙 and record the best value of 𝛽, when the 
performance reaches at the optimal.  
 Further, we describe how the proposed model makes 
predictions of the form Eq. 1, We take into account every item 
based on the unnormalized estimated multinomial probability 
fθ(y), given a user’s click vector r. The construction of the 
latent space representation y for r is as follows: We just take 
the µ of the distribution y = µϕ(r) for Mult−VAEpr. We can 
make user predictions by evaluating two methods: the 
encoder gϕ(·) and the generative model, i.e., decoder fθ(·). For 
most of the latent space, CF-based RS models used matrix 
factorization [37], [38]; in order to obtain the latent factor for 
a user whose click history is not included in the training set, 
we often need to carry out some sort of optimization. Because 
of this, autoencoders are very appealing for use in industrial 
settings where low latency and low-cost prediction are 
critical. 
 
 
5. Baselines 
 
We compare the result of the VAEMRS with the following 
linear and non-linear state-of-the-art models: 
• Collaborative denoising autoencoder (CDAE) [35]: It is 
a non-linear model incorporating the typical denoising 
autoencoder by including a latent dimension in the input. 
• KNN [39]: is a non-linear model that recommends the K 
nearest items to the user according to her preference. 
• SVD [40]: This technique uses a matrix factorization 
approach to reduce the latent dimension and takes explicit 
data to recommend the items. 
• SVD++ [41]: SVD++ is an enhanced version of SVD, 
which works on implicit data. 
• Weighted matrix factorization [38]: A low-rank 
approximation technique will train with ALS optimization to 
enhance the performance. 
• Slim [42]: A linear technique that learns a sparse matrix 
(specifically item-item similarity) and solves a constrained l1-
regularized problem. 
 
 
6. Experimental Setup 
 
This Section elaborates on the experimental setup in terms of 
hardware, software requirements, and performance metrics. 
To experiment with the proposed model, we configured the 
system with the CPU with Intel Core 8th generation and 
NVIDIA graphics. The experiment is carried out on Windows 
11 and uses Python 3.8 with Keras. Further, we split the data 
into train-test sets with a proportion of 80: 10, respectively, 
and 10% of data for validation. 
 
Performance Metrics 
To evaluate the performance of VAEMRS, we employed 
ranking-based measures such as Recall, Normalized 
Discounted Cumulative Gain (NDCG), and coverage Eqs.  5 
-8 represent Recall@K, NDCG@K, and Coverage@K, 
respectively. Recall@K includes all products ranked within 
the top K to be equally important. The choice of choosing the 
performance metrics such as recall, NDCG, and coverage is 
to prioritize the most relevant product at the top of the list. 
 
𝑅𝑒𝑐𝑎𝑙𝑙	@𝐾	(𝑢, 𝑣) = ∑ #[.(0)∈#!]

456(7|#!|)
    (5) 

 
𝐷𝐶𝐺@𝐾(𝑢,𝑤) = ∑("[$(&)∈"!]$%

9:;(0<%)
    (6) 

 
𝑁𝐷𝐶𝐺@𝐾 = =>?@+

#ABCD	=>?
     (7) 

 
 Further, Coverage@K shows the percentage of 
recommended user-item pairs over the total number of 
potential pairs. The length of the recommended lists L can 
represent the number of recommended user-item pairs. 
 
𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒	@𝐾 = EB0FGH	(E)

I×K
× 100     (8) 

 
Where w(n) denotes the items at rank n. Iu: denotes set of held 
out items that the user u clicked, and I [·]: is an indicator 
function. N and U represent a number of items and users, 
respectively. 
 
 
7. Result Discussion  
 
In this Section, we compare VAEMRS with base- line 
recommendation methods. Tab. 2, shows the experimental 
outcomes of the proposed model against the baseline 
approaches. 
 
Table 2. Performance comparison of VAEMRS with 
Baselines. 

Models Recall@20 Recall@50 NDCG@100 Coverage@20 
KNN [39] 0.38 0.40 0.26 0.20 
SVD[40] 0.34 0.36 0.25 0.19 
SVD++ [41] 0.35 0.37 0.24 0.19 
WMF [38] 0.36 0.498 0.386 - 
SLIM [42] 0.37 0.495 0.401 - 
CDAE[35] 0.391 0.523 0.418 - 
NCF [7] 0.526 0.541 0.447 - 
CDL [44] - - 0.354 - 
CVAE [45] - - 0.386 - 
NeuMF [7] - - 0.402 - 
aSDAE[46] - - 0.412 - 
VAEMRS 0.61 0.63 0.299 0.68 
 
 Since Recall, NDCG and coverage are widely deployed 
metrics for comparing top-K recommendations. Therefore, 
we consider all three metrics on the Movielens data set in our 
work. According to the results of Recall@20 and 
Coverage@20, VAEMRS consistently outperforms other 
compared methods. On the Movielens data, VAEMRS 
outperforms the second-best techniques with a margin of at 
least 11% and 21% on the evaluation metrics of recall@50 
and recall@20, respectively. However, other models such as 
CDAE, SLIM, and WMF beats VAEMRS on metrics 
NDCG@100. For the Movielens data set, VAEMRS achieves 
better results than other techniques, such as KNN, SVD, and 
SVD++, particularly on the metrics NDCG@100. It is 
surprising to see that VAEMRS achieves better results than 
all baseline methods.  
 Figs. 2, 3, and 4 show the Recall@K, NDCG@K, and 
Coverage@K scores of all Models on MovieLens, 
respectively. It is clearly visible from Fig.2, that recall@K is 
gradually increased and achieves the optimal value when 
K=100. 
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Fig. 2. The plot shows the performance of VAE across increasing K. The 
VAE model performs better at K is large (K=100). In the experiment, we 
didn't set the hyperparameter to the optimum value because the larger the 
parameter the slower the running time. 
 
 Similarly, we can observe from Fig. 3, that the NDCG@K 
of the proposed method and other baselines are almost the 
same at K=100.  
 

 
Fig. 3. The plot shows the performance of VAE across increasing K. The 
VAE model performs better at K=10. In the experiment, we didn't set the 
hyperparameter to the optimum value because the larger the parameter 
the slower the running time. 
 
 However, Fig. 4, signifies that the coverage of our 
approach gradually improved and obtained the optimal value 
at K=100. Meanwhile, the coverage of SVD and KNN almost 
overlaps each other. 
 

 
Fig. 4: The plot shows the performance of VAE across increasing K. The 
VAE model performs better at K is large (K=100). In the experiment, we 
didn't set the hyperparameter to the optimum value because the larger the 
parameter the slower the running time. 
 

 Further, Figs. 5 (a) and 5(b) show the training and testing 
time of the VAEMRS model. It can be observed that the 
proposed model takes less time to train and test than KNN and 
SVD methods 
 

 
(a) 

 
(b) 

Fig. 5 (a) shows comparison of training time different models. It is found 
that VAEMRS takes less time during testing compared to KNN and SVD 
and (b) shows comparison of testing time different models. It is found 
that VAEMRS takes less time during testing compared to KNN and SVD. 
 
 
 Firstly, we have to sample the data and use a much smaller 
dataset to train the models. Secondly, we failed to add 
genomes (side information) to FM, because it fits model 
single-threadly, taking too much time to train and making our 
computers crash. Besides, in VAEMRS we have to choose 
some small hyperparameters, specifically, the epoch and 
batch-size is set to a small value.  
 Further, we study the impacts of several latent spaces K. 
Results on Movielens data are shown in Fig. 6. The Fig. 6 
shows the performance of VAE across increasing K. The 
VAE model performs better at K is large (K=100) in recall 
and coverage, whereas the NDCG achieves the best value at 
K=10 and then linearly decrease with increase of K. In the 
experiment, we didn't set the hyperparameter to the optimum 
value because the larger the parameter the slower the running 
time. 
 
Computational Burden: Stochastic gradient descent is used 
in the training of previous neural network-based collaborative 
filtering models [14, 51], where a single (user, item) element 
from the click matrix is randomly picked to execute a gradient 
update in each step. To update the model parameters in 
Algorithm 1, we subsample users and use their whole click 
history (all rows of the click matrix). This removes the need 
for negative sampling, which is typically employed in the 
(user, item) entry subsampling method. As a result, the 
hyperparameter tweaking for selecting the number of 



Gopal Behera, Basanta Kumar Swain, Ravindra Kumar Soni and Jitendra Parmar/ 
Journal of Engineering Science and Technology Review 17 (6) (2024) 23 - 29 

 28 

negative examples is also eliminated. Our method presents a 
computational problem, though, in cases when there are a 
large number of items. This is because computing the 
multinomial probability 𝜋(𝑧") could be computationally 
costly, as it necessitates calculating all of the item predictions 
for normalization. When a vocabulary counts in the millions 
or above, this is a typical problem for language modeling [50]. 
 

 
Fig. 6. The plot shows the performance of VAE across increasing K. The 
recall and coverage of the VAEMRS model performs better at K is large 
(K=100). While the NDCG of VAEMRS decreases with increase of K. 
In the experiment, we didn't set the hyperparameter to the optimum value 
because the larger the parameter the slower the running time. 
 
 
Scalability and Industry Application: A Variational 
Autoencoder (VAE), which encodes inputs into a probability 
distribution across the latent space, usually a Gaussian one. 
By using a probabilistic method, VAEs can sample from the 
latent distribution, which facilitates the creation of new and 
varied data instances as well as improved data variability 
modelling. 
 Variational Autoencoders (VAEs) have the potential to 
revolutionize and change a multitude of industries, even 
outside of image processing. The VAEs exhibit remarkable 
adaptability and capacity to address intricate and diverse 

tasks, ranging from producing novel textual content and 
music to propelling drug development and evaluating 
financial information. This exploration of VAEs' multidomain 
applications demonstrates not just their technical aptitude but 
also the creative ways in which they can be used to address 
pressing issues in society. 
 
 
8. Conclusion and Future Work 
 
In this article, we develop a variational autoencoder for the 
movie recommendation system (VAEMRS) for the 
collaborative filtering of click data (implicit data). This allows 
us to overcome the limitations of linear factor models with 
respect to modeling capability. We present a generative model 
with a neural network parameterized multinomial likelihood 
function. We demonstrate that modeling user-item implicit 
feedback data perfectly fits multinomial likelihood. We 
compare the outcomes obtained against a collaborative 
denoising autoencoder and WMF. We empirically show that 
CDAE and WMF provide competitive performance in 
recall@50 with VAEMRS. Further, VAEMRS significantly 
outperforms the baseline approaches in openly available 
datasets, including a recently developed neural network-
based model. In subsequent research, we hope to learn more 
about the trade-off made possible by the extra regularization 
parameter β and develop a deeper theoretical understanding 
of why it functions so effectively. Extending VAEMRS by 
incorporating auxiliary information about users and items 
might also be a way to enhance performance. 
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