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Abstract 
 

When transporting coal under the effect of various factors, open wagons often encounter issues, such as red ore, coal 
residues, foreign objects, and frozen and snowy bottoms, which increase consumption and costs. The inspection of open-
wagon transport status mostly relies on manual monitoring, which has low automation and is labour intensive and 
inefficient. This study proposed a You only look once X (YOLOX) model based on a parameter-free attention residual 
structure and lightweight adaptive feature fusion pyramid to improve the accuracy of the detection of the state of open-
vehicle transport. A parameter-free attention residual structure (SARM) and self-adaptive spatial feature fusion 
module (SASFF) modules were introduced into the neck network of YOLOX. The improved YOLOX model was built 
by using a highly perceptive detection structure (DCBS) module proposed in this study in the detection process, and 
the accuracy of the model was verified by experiments. Subsequently, a high-quality open-truck-transportation image 
dataset was constructed for the open-truck transportation target detection task and accurately labelled. Results 
demonstrate that, in experiments on the Common Objects in Context 2017 dataset, the improved YOLOX algorithm 
shows improvements of 11.9%, 4.4%, and 1.9% over the YOLOX, YOLO-V5, and YOLO-V8 algorithms, respectively, 
and the proposed algorithm exhibits considerable improvements in missed and wrong detections. The proposed method 
provides the rapid detection of the transport status of open wagons for subsequent automated reporting and logging. 
 
Keywords: Object detection, C80B open wagon, Transport state, Attention mechanism 
____________________________________________________________________________________________ 

 
1. Introduction 
 
With the booming development of information technology, 
deep learning algorithms have received increasing attention 
in numerous disciplines. These algorithms are based on 
massive data and can perform diverse tasks quickly and 
accurately, especially in the fields of digital city construction 
and image processing, and thus show promise for a wide 
range of applications in the field of foreign object and state 
detection. Computer image detection technology has become 
the core science and technology in the fields of 
manufacturing, biology, transport, and military and has 
made important contributions to the progress of society and 
development of the national economy. 

Traditional technical means of foreign object and 
vehicle load detection, such as real-time on-site video 
monitoring, plug-in sensors [1], and millimeter-wave radar 
[2], have become the direction of research in domestic 
railway scenarios to meet the demand for high performance 
and precision in specific situations. These techniques either 
rely on manual discrimination or make use of instruments 
for rapid detection. However, these sensors cannot easily 
meet the actual needs of monitoring open-vehicle transport 
conditions due to the limitations imposed by their strict 
requirements for the detection environment, high 
maintenance costs, and susceptibility to external interference. 
With the continuous advancement of information technology, 

computer image-based defect detection technology has 
become ideal for the monitoring of open-vehicle transport 
conditions due to its advantages of high automation, efficient 
execution, and non contact detection. In contrast to other 
inspection techniques, computer image inspection 
technology effectively overcomes the numerous problems of 
manual inspection and machine-mediated detection. 

The above analysis shows that although scholars have 
conducted numerous studies on foreign object and vehicle 
load detection [3-6], the current research still has some 
shortcomings. First, detection accuracy and real-time 
performance still need to be improved. In particular, how to 
ensure the accuracy and real-time performance of test results 
in complex and changing traffic environments is an urgent 
problem to be solved. Second, existing detection methods 
are often affected by environmental factors, such as lighting 
and weather conditions, thus limiting their wide promotion 
in practical applications. 

In consideration of the above-mentioned real-world 
problems and theoretical background, this study aims to 
explore new methods and techniques for foreign object and 
vehicle load detection at the theoretical level. Through an in-
depth study of existing detection technologies in 
combination with the latest research results and 
technological trends, we propose an efficient and accurate 
detection method to solve the problem of detecting foreign 
objects and vehicle loads in real traffic environments. Our 
proposed method not only has important theoretical value, it 
will also provide strong technical support for the 
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development of coal mine traffic safety and logistics 
industry. 
 
 
2. State of the art  
 
The task of foreign object and vehicle load detection mainly 
involves a fusion of detection algorithms and practical 
application scenarios. However, complex environments and 
effective feature extraction have always been a problem for 
detection algorithms. Existing deep learning foreign object 
tracking and detection algorithms are susceptible to the 
influence of complex environments and target occlusion, 
leading to problems, such as leakage and low detection 
accuracy. Chen Yong et al. [3] proposed a spatial 
localization and feature generalization enhancement of the 
GhostNet feature network for a railway foreign object 
tracking and detection algorithm. However, the stability and 
robustness of the algorithm in the face of extreme bad 
weather or highly similar foreign object interference still 
need further validation and optimization. Ye Tao et al. [4] 
simplified feature extraction through the linear 
transformation of feature maps, employed adaptive multicale 
feature fusion to optimize feature expression capability, and 
subsequently used lightweight attention to improve accuracy 
in combination with the Jetson embedded platform. They 
thus proposed an autonomous detection system for foreign 
objects in track intrusion boundaries based on LAM-Net. 
However, the system's balance between real-time 
performance and accuracy in addressing the interior state of 
fast-moving carriages, especially in complex and dynamic 
environments, still requires further optimization. 

With the wide application of the YOLO model, research 
on optimization algorithms for YOLO for foreign object 
detection is also being conducted for the first time. For 
example, Hao Shuai et al. [5] used the adaptive histogram 
equalization algorithm to enhance the contrast of conveyor 
belt images in underground coal mines and reduce 
interference from coal dust. Subsequently, network detection 
speed was improved by introducing depth-separable 
convolution into the framework of the YOLOv5 algorithm, 
and the detection accuracy of the whole network was 
improved by optimizing the loss function of the detection 
network. Second, the CBAM-YOLOV5 algorithm for 
downhole foreign object detection was constructed by 
introducing a convolutional block attention model into the 
YOLOv5 detection network to enhance the saliency of 
foreign object targets in images. However, the detection 
performance and stability of this algorithm may be affected 
to some extent when dealing with extremely complex or 
poorly illuminated underground coal mine images, and 
further optimization is still required. Guan Ling et al. [6] 
proposed a CSPShuffleNet structure using a fusion cross-
stage structure and channel shuffling strategy, introduced a 
multihead attention mechanism into the neck network, 
applied separated convolution to replace the traditional 
convolution in the head network, and synthesized the 
improved YOLOV4-Tiny algorithm to solve the problem of 
intrusion detection in a rail line environment. However, 
further improvement in the detection accuracy and 
robustness of the algorithm when facing complex and 
changing track line environments, such as extreme weather 
and obstructions, is still necessary. He Zifen et al. [7] 
designed a CSPTNet algorithm for the nighttime detection of 
airport runway foreign objects incorporating a self-attentive 
feature embedded by replacing the bottleneck module with 

the transformer bottleneck module, introducing a multihead 
self-attention mechanism, and changing the IOU loss 
function to the CIoU loss function. However, the algorithm 
may exhibit reduced detection sensitivity and accuracy when 
dealing with faint reflections or hidden foreign objects on 
airport runways at night, and additional in-depth research 
and optimization are still required. 

In addition to the aforementioned foreign object 
detection algorithms based on target detection, numerous 
researchers and scholars have taken advantage of the 
continuity of video information to propose interframe 
computation and tracking for detection. For example, Wang 
Linfeng et al. [8] introduced the interframe differential 
optimization algorithm for weighted evaluation to achieve 
multiframe sequential recognition and proposed an 
interframe differential optimization method for detecting 
foreign objects on foggy tracks. However, their method may 
experience difficulty in accurately distinguishing foreign 
objects from the background under foggy conditions when 
fog concentrations are extremely high or when the foreign 
objects are similar in color to the background, resulting in 
limited detection. Weiming Liu et al. [9] collected 
background and detection images when a train stops at a 
platform, extracted the feature information of the images to 
obtain the feature pyramid through the encoding part of the 
network, and connected the feature maps of the two images. 
They then computed the feature differences to acquire the 
foreground heat maps of the images to be detected by the 
decoding part and finally obtained the detection results 
through threshold segmentation and contour screening. They 
proposed combining semantic segmentation with the 
background reference foreground detection method. 
However, their method may face the problem of decreasing 
detection accuracy or increasing false detection rates when 
dealing with complex and changing station environments, 
such as dense crowds and changing light. Wang Guoyi et al. 
[10] employed the velocity-assisted linear interpolation of 
positional information to obtain the most relevant frames 
between a background template image library and an image 
sequence to be detected. The image was then divided into 
different subblocks, and adaptive weights were set by using 
the complexity of the image texture within each subblock in 
combination with the ORB algorithm for feature point 
extraction. Furthermore, the feature points of the subblocks 
were normalized to the original image and aligned with the 
most relevant frames of the background template library for 
difference. The foreign object was then obtained. Finally, a 
kernel correlation filter was introduced to track multiple 
foreign object targets. However, this method may lead to 
inaccurate feature point extraction when dealing with high-
speed moving train images with train vibration and image 
blurring. This effect, in turn, affects the accuracy and 
stability of foreign object detection. 

Given that 3D LiDAR point cloud data are also often 
used for foreign object detection, Zhu and Hyyppa [11] 
employed airborne and mobile laser scanning techniques to 
model the railway environment in 3D. The method 
constructs a detailed 3D model of the railway environment 
from high-precision laser scanning data. The model provides 
intuitive and accurate data support for the maintenance, 
management, and planning of railway infrastructure and 
helps improve the efficiency and safety of railway 
operations. However, this method may face the problems of 
large computational volume and long time-consumption in 
data processing and model construction, which requires high 
hardware resources. Zhangyu et al. [12] proposed a camera 
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and LiDAR data fusion method for railway object detection. 
This method improves the accuracy and robustness of 
detection by fusing camera and LiDAR data. In the railway 
environment, the system can identify and track railway 
objects in real time, providing strong technical support for 
railway traffic safety. The method provides new ideas and 
solutions for railway safety monitoring. However, the 
performance of the method may be affected by 
environmental factors, such as extreme weather and 
changing light conditions, which may have an effect on the 
stability and accuracy of the system. 

Meanwhile, some researchers have solved the foreign 
object detection problem for specific railway monitoring 
scenarios by using different neural network structures. Tao 
et al. [13] presented a feature fusion refinement neural 
network for the detection of railway traffic objects in 
shunting mode. This network improves the accuracy and 
robustness of detection by fusing multiple features. In a 
complex and changing shunting environment, the system can 
effectively identify and track railway traffic objects, 
providing a strong guarantee for railway traffic safety. 
However, the method has high computational complexity 
and may need to run on high-performance hardware to meet 
real-time requirements. Zhang et al. [14] proposed a real-
time detection method based on deep learning for the 
problem of foreign object detection in complex open railway 
environments. This method utilizes the powerful feature 
extraction capability of the deep learning model to achieve 
the efficient and accurate detection of railway foreign 
objects. In the complex and changing railway environment, 
the system can identify and warn against potential safety 
hazards in real time, improving the safety of railway 
operations. However, the detection performance of the 
method may suffer under extreme weather or highly variable 
lighting conditions. Chen et al. [15] discussed a 
semisupervised learning method for the problem of foreign 
object detection in railway ballasted track beds. The method 
uses a small amount of labeled data and a large amount of 
unlabeled data to improve the generalization ability of the 
detection model by semisupervised learning. The system can 
accurately identify and locate foreign objects in the special 
environment of ballasted track beds, providing strong 
support for the maintenance and management of railway 
tracks. However, this method has certain requirements 
regarding the quality and quantity of unlabeled data that may 
affect the training effect of the model. Guo et al. [16] used 
generative adversarial networks to generate images of high-
speed railway intrusions. This method provides rich data 
support for railway safety monitoring by simulating foreign 
object images in a high-speed railway environment. The 
generated images have a high degree of realism and diversity, 
helping improve the training effect and practical application 
of the railway safety monitoring system. However, the 
method may be affected by the training data when 
generating images, resulting in some differences between the 
generated images and real environment. Feng et al. [17] 
established an efficient foreign object recognition model for 
rail traffic. The model achieves the fast and accurate 
recognition of rail traffic foreign objects through real-time 
railway region extraction and object detection. In the 
complex rail environment, the system can efficiently identify 
and deal with potential safety hazards, providing a strong 
guarantee for the safe operation of rail transport. However, 
this method may require long training times and high 
amounts of computational resources when dealing with 
large-scale data. Wang et al. [18] investigated a detection 

method for neural network foreign objects that maintain 
differential privacy on distributed devices. This method 
protects the privacy security of data by adding noise on the 
basis of heterogeneity while achieving the accurate detection 
of railway foreign objects. In a network composed of 
distributed devices, the system can ensure the safe 
transmission and processing of data, providing a reliable 
guarantee for railway safety monitoring. However, this 
method may have some effect on the detection accuracy 
while increasing noise. 

The above results are mainly for foreign body intrusion 
and other conditions of track state detection. No algorithm 
specifically for the transport of coal in open wagons exist, 
indicating that some shortcomings persist.  Datasets 
dedicated to the detection of the operating state of open 
wagons do not exist and cannot be directly applied to the 
algorithm of the task . Moreover, the detection capability 
and adaptability of current algorithms for the complex and 
changing internal states of carriages, especially those 
involving multiple dynamic changes, still need to be 
strengthened. In particular, for multitarget detection with 
similar features inside a carriage, the structural redundancy, 
poor detection accuracy, and other problems of the current 
detection algorithm network will lead to missed and wrong 
detections. Therefore, the algorithmic model still requires 
further in-depth research and exploration. In this study, a 
high-precision open-wagon transport detection algorithm is 
proposed for the internal state detection of C80B carriages 
on the Shendong Dachen line. The main contributions of this 
work include constructing and accurately labeling an open-
wagon transport image dataset; introducing a parameter-free 
attention residual structure (SARM) into the You only look 
once X (YOLOX) neck network to improve the ability of 
acquiring the location information of feature maps; adding a 
self-adaptive spatial feature fusion module (SASFF) to 
improve multiscale feature utilization rates; adopting a 
highly perceptive detection structure (DCBS); and 
enhancing target feature information through the expansion 
of perceptual field utilization. Finally, the accuracy of the 
algorithm proposed in this study is verified on a publicly 
available dataset and the open-vehicle transport state dataset. 

The remainder of this study is organized as follows: The 
structure of the foreign body detection algorithm and 
construction of the network model of the detection algorithm 
are described in Section 3. The comparison and ablation 
experiments on the algorithm using a publicly available 
dataset; the verification of the feasibility, excellent 
performance, and detection accuracy of the algorithm in real 
application scenarios; and qualitative and quantitative 
analyses on the datasets of the application scenarios are 
reported in Section 4. The last section summarizes the study 
and provides relevant conclusions. 
 
 
3. Methodology  

 
This study, which aims to address the poor detection of 
foreign objects and redundancy of the network structure of 
most algorithms, proposes an efficient detection algorithm 
for open-truck transport images with the network structure 
shown in Fig. 1. The overall backbone network of the 
algorithm adopts the CSPdarnet53 structure that incorporates 
the attention of SimAM. The neck network architecture 
adopts the path aggregation feature pyramid network 
(PAFPN) structure, and the head network adopts the 
decoupled detection head structure. The image to be detected 
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passes through the backbone network, and the SARM 
structure fused with SimAM attention is designed to enhance 
the feature extraction of the image to be detected and 
provide effective feature information for subsequent learning. 
The neck structure is designed with a lightweight PAFPN–
SASFF structure for the fusion of the target features to 
increase the reliability of target feature information. The 

convolution operation (Conv) in the detection network is 
replaced with the introduction of dilated convolution into the 
detection network to construct the DCBS structure in 
combination with the above SASFF and thus achieve the 
optimal fitting of the model and obtain the final detection 
results. The overall structure is shown in Fig. 1. 
 

 

 

Fig. 1.  Schematic of the overall structure 
 
3.1 Parameter-free attention residual structure 
The parameter-free attention residual structure is a network 
structure inspired by the cross-stage partial network 
(CSPNet). First, the original input features are divided into 
two branches: first through Conv then through the batch data 
with the channel normalization (batch normalization [BN]) 
layer. Subsequently, the CBS module is constructed by using 
the commonly used sigmoid linear unit (Silu) activation 
function. The CBS module halves the number of input 
feature channels. Subsequently, the residual bottleneck 
structure (bottleneck) is constructed by using the first branch. 
Next, the two branches are spliced together, and the residual 
bottleneck structure is constructed by the parameter-free 
attention mechanism. After the CBS module, the number of 
input feature channels is halved. The first branch is then 
used to build the residual bottleneck structure (bottleneck). 
Subsequently, the feature vectors of the two branches are 
spliced, and the three-dimensional attention weights for the 
feature map are inferred through the parameter-free attention 
mechanism to pay attention to deep target features. The deep 
target feature vectors are then derived by fusing the two 
branches. Finally, the obtained feature vectors are subjected 
to Conv then passed through the BN layer. After this step, 
the CBS module is used and the final feature vectors are 
obtained. The overall module structure is shown in Fig. 2. 

The SimAM attention mechanism is implemented 
primarily by evaluating the importance of each neuron. For 
each neuron, an energy function that measures the linear 
divisibility of the target neuron and other neurons is defined: 

 
       (1) 

 

   

Fig. 2.  Schematic of the SARM structure 
 

 
In Equation (1),  represents the target neuron of the 

input feature ,  represents the other neurons, 
 is the index on the spatial dimension,  represents the 

weight of the neuron when it is transformed, and  
represents the bias of the neuron when it is transformed.  
represents the binarized labels, which are also known as −1 
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and 1, and  represents the number of all neurons 
in the channel. 

By using  and  and assigning 

values to  and  and adding regular terms, we obtain 
 

   

(2) 
 

In Equation (2),  represents the coefficients of the 
canonical term, and the following relationship can be 
obtained from the above equation:  

 

                        (3) 

 
In Equation (3),  ，

. 

Therefore, substituting  and  into Equation (1) 
yields the minimum energy equation:  

 

                            (4) 

 
In Equation (6), a low energy is indicative of the high 

importance of the neuron t as distinct from peripheral 
neurons. Therefore, the importance of neurons is inversely 
proportional to . Hence, for feature image  and 
enhanced , the following relationship defining the energy 
function as  exists: 

 

                     (5) 

 
3.2 Simple adaptive feature fusion pyramid 
The simple adaptive feature fusion pyramid structure is 
optimized for the ASFF structure, which proposes an 
adaptive feature fusion method that allows a network to 
learn automatically to filter out useless information from 
other layers and retain useful information to fuse features 
efficiently. Specifically, for features in a particular layer, 
other layer features are first resized to the same size as the 
current layer before fusing the other layer features. The 
model is then trained to learn the optimal fusion method (i.e., 
to learn the weight share of the features in each layer at the 
time of fusion). In this study, the feature fusion for the 
second and third layers in ASFF is canceled, and feature 
fusion and learning information are only performed for the 
first layer, which is targeted to perform multisize target 
feature enhancement to construct SASFF and effectively 
reduce the number of parameters. 
 

 

Fig. 3.  Schematic of the SASFF structure 
 
The feature fusion in Fig. 3 can be represented by the 

following equation: 
 

          (6) 
 
In Equation (6)  represent the characteristics of 

the first, second, and third tiers, respectively.  
represent the weighting parameter. l stands for the 
corresponding level, which in this study is set to be , 
stating that the variables satisfy the following relational 
equation: 

 

         (7) 

 
 In Equation (7),  is the result obtained by 1 × 1 

convolution acting on the upper level of the feature, which 
can be updated by backpropagation for learning.  

 
3.3 Detection network 
The detection network optimizes the decoupling head design 
in YOLOX. The structure is designed to reduce the number 
of feature channels relative to each level of features 
incoming from the backbone network by first passing 
through a 1 × 1 convolutional layer then adding two parallel 
branches, each consisting of two 3 × 3 convolutional layers 
for classification and regression, i.e., decoupling the 
commonly used prediction header into classification and 
regression headers, wherein the regression header is divided 
into localization and edge regressions. Given that a suitable 
receptive field for classification will yield suitable features 
for classification, by using cavity convolution, features are 
generated by using cavity convolution with a dilation rate of 
[2,2,2]. This approach effectively expands the receptive field 
of the layer with cavity convolution. Fig. 4 shows the 
schematic of cavity convolution. 
 

 
  Fig. 4.  Dilated convolution 

 
Dilated convolution is the insertion of zero values 

between the neighboring weights of a standard convolution 
kernel. Therefore, it is also known as dilation or porous 
convolution. This design can expand the sensory field of the 
neural network and will not increase weight parameters. The 
zero value will not be involved in Conv to achieve the use of 
few parameters and a high amount of background 
information for the purpose of feature extraction. Dilation 
rate is an important parameter in null convolution. It 
determines the number of zero values inserted into the 
convolution kernel and controls the distance between 
adjacent nonzero weights when the convolution kernel 
performs Conv. Its expression is 
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       (8) 

 
In Equation (8), x represents the input value, y represents 

the output characteristics,  represents the weights of 
the positions in the convolution kernel,  represents the 
coordinates of the pixels in the image, and  represents the 
dilatancy parameter of the cavity convolution. The resulting 
detection structure is shown in Fig. 5. 

 

 
Fig. 5.  Schematic of the structure of the decoupling head 
 

The structure of the DCBS using the null convolution 
and the BN layer paired with the Silu activation function in 
Fig. 5 is indicated in the lower left corner of Fig. 1. Such a 
structure can increase the sensory field of convolution 
without increasing the parameters to increase the utilization 
of feature information. 

 
4. Result Analysis and Discussion 
 
4.1 Experimental environment and process 
The hardware environment in the experiments in this study 
is an Intel Core i7-10700 CPU with an NVIDIA GeForce 
RTX 3060ti graphics card using the Python 3.8 
programming language, PyTorch 1.8.1 deep learning 
framework, and Cuda 10.2 environment. The datasets used 
for the experiments are the Common Objects in Context 
2017 (COCO2017) dataset and the open-car transport state 
dataset. The training parameters are all adopted from Table 1. 
In the analysis of the experimental results, mean average 
precision is employed for the quantitative analysis of the 
algorithm's performance. The graph of the final detection 
results of the algorithm is shown for qualitative analysis. 
 
Table 1. Training parameters 

Indicators Parameter setting 
Batch size 16 

Epoch 300 
Weight decay 0.0001 

Hyperparameter 0.9 
Optimizer Adam 

Learning rate 0.0004 
 
4.2 Analysis of the experimental results for the 
COCO2017 dataset 
The COCO2017 dataset is a dataset provided by the 
Microsoft team that can be applied for image recognition. It 
includes 118 287, 5000, and 40 670 training, validation, and 
test images, respectively, in 80 categories. 
 

 
Table 2. Comparative experiment on the COCO dataset (bold font in the table indicates optimal indices) 
Method Backbone Size FPS (3060ti) MAP:50-95 
YOLOV5-S CSPResNet50 640 86.1 37.4 
YOLOV8-S ELAN 640 88.2 44.9 
YOLOX-DarkNet CSPDarkNet50 640 87.2 47.4 
Improved YOLOX-DarkNet CSPDarkNet50 640 85.4 49.3 
 

The relationship between the accuracies of the YOLOV5-
S, YOLOV8-S, and YOLOX-DarkNet models and that of 
the improved YOLOX model on the COCO2017 dataset is 
validated in Table 2. The accuracy of the improved YOLOX 
model has improved by 11.9%, 4.4%, and 1.9% compared 
with those of the other models. 

 This study selects a railway scene, a classroom scene 
with repetitive feature targets, and a confusing crowded 
scene in the COCO2017 dataset as the validation images to 
demonstrate the effect of the proposed algorithm intuitively. 
Moreover, it takes the YOLOV8 and YOLOX algorithms 
with high accuracy, as shown in Table 2, to conduct 
comparative experiments in the environment presented in 
Table 1. The detection results are then visualized and 
analyzed. 

Fig. 6 shows that the YOLOV8 and YOLOX algorithms 
cannot complete the detection of people at the edge of the 
red dotted line in the railway scenario and that of chairs in 
the red dotted line in the classroom scenario with repetitive 
feature targets. Moreover, they exhibit numerous omissions 
of crowded pedestrians in the dashed lines in the confusing 
crowded scenario. By contrast, the improved YOLOX can 
be used in the above scenarios. The improved YOLOX can 
detect the results in all the above scenarios. 

4.3 Ablation experiment 
The accuracy results in Table 3 are obtained by using the 
structure proposed in the study for ablation experiments, the 
COCO2017 dataset, and YOLOX-DarkNet as the baseline 
network trained with the training parameters in Table 1. 

 

 
Fig. 6. Visualization of the comparative experiment on the COCO2017 
dataset 
 

Table 3 shows that each proposed module applied on the 
model has a certain improvement in performance. A heat 
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map, as shown in Fig. 7 below, is also generated to visualize 
intuitively the key areas of concern of the models. 

 
Table 3. Ablation experiments (bold font in the table 
indicates the optimal indices) 
YOLOX-DarkNet +SARM +SASFF +DCBS mAP(%) Param(M) 

√    47.4 9.0 
√ √   47.8 9.41 
√ √ √  49.1 9.47 
√ √ √ √ 49.3 9.75 

 
 

Fig. 7.  Comparison of the heat maps of ablation experiments 
 

Fig. 7 shows that compared with the improved YOLOX, 
the YOLOX algorithm has focused on the edge-side 
pedestrians at the red dotted line in the first- and second-
level features in the first image but not on the third-level and 
fused features on the edge-side pedestrians at the red dotted 
line in the figure. The features at all levels in the second 
image have focused on the red dotted line, but the weights 
have remarkably decreased. Moreover, although the third 

features in the first and second layers of the image focus on 
the red dashed line, the features have considerably weakened 
after subsequent fusion. The improved YOLOX algorithm is 
effective in extracting features in the above cases. Therefore, 
compared with the preimprovement structure, the improved 
structure has higher performance for people at edges, the 
classroom scene with duplicate feature targets, and the 
confusing crowded scene. 

 
4.4 Analysis of the experimental results for the open-
truck transport state database 
In this study, the labelme annotation tool is used for 
annotation, wherein 1267 training images and 370 validation 
images, constituting five categories, are included. The object 
classes are frozen bottom, red mine, empty car, with coal, 
and head. 
 
Table 4. Comparative experiment on the Gondola transport 
status dataset (bold font in the table indicates the optimal 
indices) 
Method Backbone Size FPS (3060ti) MAP:50-95 
YOLOV5-S CSPResNet50 640 84.4 69.6 
YOLOV8-S ELAN 640 87.6 73.8 
YOLOX-DarkNet CSPDarkNet50 640 88.2 75.1 
Improved YOLOX CSPDarkNet50 640 92.3 77.2 
 

The relationship among the accuracies of the YOLOV5-S, 
YOLOV8-S, YOLOX-DarkNet, and improved YOLOX 
models on the open-vehicle transport state dataset is 
validated in Table 4. The accuracy of the improved YOLOX 
model has improved by 17.6%, 3.4%, and 2.1% compared 
with that of the other models.  

This study chooses empty trucks, frozen bottom, coal with 
coal, snowy bottom, and red mine in the open-truck transport 
status dataset as the verification images to show the effect of 
the proposed algorithm intuitively. The YOLOV8 and 
YOLOX algorithms with high accuracy (Table 4) are used to 
conduct comparison experiments in the environment shown 
in Table 1. The detection results are visualized and analyzed. 

 

Fig. 8.  Visualization of the comparative experiment on the Gondola transport status dataset 
 
The second column in Fig. 8 shows that the YOLOV8 and 

YOLOX algorithms cannot complete the detection in the 
frozen bottom scenario. Specifically, YOLOV8 identifies the 

frozen bottom scenario as an empty car, whereas YOLOX 
identifies the frozen bottom scenario as a car with coal. The 
third column shows that YOLOV8 can detect the case of a 
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car with coal. However, the detection frame is at the wrong 
position. Meanwhile, YOLOX experiences leakage detection. 
The fourth column shows that YOLOV8 can detect the snow 
scenario. However, the position of the detection frame is 
incorrect. Meanwhile, YOLOX can obtain the correct result. 
Column 5 shows that YOLOV8 identifies the red mine 
scenario as car with coal, and YOLOX has a deviation in the 
position of the detection frame. By contrast, the improved 
YOLOX can detect the correct results in the above scenarios. 

 
 

5. Conclusions 
 
This study started from the YOLOX model to improve the 
leakage and wrong detection phenomena and detection 
accuracy in the detection of foreign objects. Experiments 
proved that the proposed method improved detection 
accuracy with a small increase in the number of parameters 
and the detection of targets in open-car transport images to 
reduce the identification of the abnormal state of open cars 
manually. The following conclusions could be drawn: 

(1) The global information of the feature map was 
enhanced by adding an efficient channel attention module to 
the neck structure of the YOLOX model, and accuracy 
improved by 0.8% as shown by the ablation experiments. 

(2) Adding a new detection head to the detection 
component improved the accuracy of the detection of targets 
on different scales, as shown by the ablation experiments. 

Accuracy improved by 4%, and the convergence of the 
model accelerated. 

(3) The method improved the accuracy of the improved 
YOLOX model compared with that of the other models by 
17.6%, 3.4% and 2.1%, with a small increase in the number 
of parameters. This effect improved the accuracy of the 
detection of the running state of open cars. 

This study performed analyses and experiments on 
application scenarios from publicly available and homemade 
datasets to propose an algorithmic model for target 
recognition and classification in foreign object and vehicle 
load detection. The constructed detection model is close to 
the actual coal mine logistics scenario while maintaining 
high efficiency and has a certain reference value for 
improving the efficiency of foreign object detection in 
carriages. However, given that this study adopted a small 
self-made dataset, the dataset suffers from the problem of 
limited and imbalanced categories, affecting the detection 
results of the algorithm. Moreover, the method in this study 
cannot obtain accurate results for targets with insignificant 
category characteristics and targets accounting for a small 
percentage of a dataset. Therefore, in follow-up work, we 
will conduct an in-depth study on such problems for targets 
with inconspicuous features and small samples in the dataset. 

 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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