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Abstract 
  

Detection of vehicles is a key task in many smart transportation applications, involving traffic management, road 
infrastructure, autonomous driving, and other challenges that arise due to the daily growth in vehicle numbers. Several deep 
learning (DL) based techniques have previously been explored and investigated by the researchers for vehicle detection, 
but vehicle detection in noisy images is still considered a difficult task. Low-light, low-resolution, and other environmental 
noise have a substantial impact on images, significantly reducing vehicle detection system performance. In this paper, we 
implemented MIRYO, a hybrid model for detection of vehicles in challenging images based on MirNet-v2 and modified 
Yolov3. The task of vehicle detection was completed by creating a two-stage pipeline. MIRNet-v2 was used in the first 
stage of this pipeline to reduce noise and improve image contrast in low-quality challenging images. The second stage of 
this pipeline, used modified YOLOv3 to detect and localize vehicles in images. The hybrid model MIRYO is evaluated on 
two baseline datasets: the challenging MIOTCD and the high-resolution Highway dataset, and its performance is compared 
to that of the Yolov3, Yolov4, and Yolov5 architectures on the same dataset. MIRYO achieved an overall mAP of 76.9% 
on the MIOTCD dataset, while YOLOv3, YOLOv4, and YOLOv5 achieved 75.1%, 74%, and 75%, respectively, and a 
mAP of 94.8% on the Highway dataset, while YOLOv3, YOLOv4, and YOLOv5 achieved 94.5%, 94.9%, and 94.8%, 
respectively. 
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1. Introduction 
 
The rapid rise in vehicle and population on the road placed a 
significant strain on transportation infrastructure, resulting in 
a number of issues such as traffic jams, over-
crowding, vehicle theft, rule breaking, and so on [1]. To 
address these issues, many technological advancements in 
Intelligent Transportation Systems (ITS) have occurred over 
the last decade. The technological advancement in sensor, 
computer vision, and deep learning enables substantial 
advantages in ITS applications including autonomous 
driving, traffic analysis and management, transportation 
networks, and so on, and vehicle detection is at the heart of 
these kind of smart transportation applications. 
 Deep learning models for vehicle detection performed 
better than traditional algorithms due to the accessibility of 
abundant data and cutting-edge hardware. Traditional vehicle 
detection algorithms require a significant amount of 
computation time and effort because they rely on hand-crafted 
features, and these techniques are not suitable for real-time 
detection. Traditional methods involve three steps: in the first 
step, it proposes a region of interest (ROI) using techniques 
such as selective search, sliding window, and so on; in the 
second step, features are extracted from ROIs using 
handcrafted-feature extraction methods such as HoG [2], 
SIFT-like [3], Haar-like [4], and so on; and in the third step, 
various classifiers such as SVM [5], AdaBoost [6], kNN [7], 
and so on are used to detect and classify vehicles. Deep 
learning-based vehicle detectors are classified into two types: 
2-stage and 1-stage detectors. 2-stage detectors such as 

RCNN [8], FRCNN [9], Faster RCNN [10], and others 
involve two steps: in the first stage of the process, region 
proposal network (RPN) proposed ROIs, and in the second 
stage, proposed ROIs features are used to detect vehicles with 
bounding boxes. 2-stage detectors required more computation 
power but achieved good detection accuracy. 1-stage 
detectors, such as YOLO [11] and SSD [12], detect vehicles 
with bounding boxes in a single phase without region 
proposal which makes them faster than 2-stage detectors.  
 Though vehicle detection has received a great deal of 
attention recently, much more research is required to create 
systems that are reliable and perform well in real-world 
conditions. Vehicle detection in images is still plagued by 
issues such as occlusion, environmental and illumination 
conditions, a wide range of vehicle types, vehicle orientation 
and size, and so on [13]. The efficiency of vehicle detection 
in image is influenced by environmental noise and lighting 
conditions. To tackle these issues, proposed study developed 
MIRYO, a hybrid model for detecting vehicles in challenging 
images based on MirNet-v2 [14] and modified Yolov3. This 
paper's main contributions are: 
 

• A hybrid model MIRYO for vehicle detection in 
challenging images that combines MIRNetv2 and a 
modified YOLOv3. 

• To validate the effectiveness of MIRYO, two public 
benchmark datasets, MIOTCD [15] and Highway 
[16], are used. 

• The hybrid model MIRYO’s performance is 
compared to YOLOv3 [17], YOLOv4 [18], and 
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YOLOv5 [19] in terms of F1-score, precision, 
recall, and mAP. 

 
 The rest of this paper is structured as follows. Section 2 
offers the summary of previous works. Section 3 describes, 
MIRYO, our hybrid model. The experimental setups 
employed in this work, along with the data sources and hyper-
parameters, are detailed in Section 4. Section 5 contains the 
findings and discussion, and the paper is concluded and 
recommendations for future investigations are offered in 
Section 6. 
 
 
2. Related Work 
 
Many researchers have published various techniques for the 
detection of vehicles in images, but it is still a difficult task as 
these images suffer from various environmental noise, 
complex weather, and illumination conditions, all of which 
have a substantial impact on images, significantly reducing 
vehicle detection system performance. Despite the fact that 
DL models have been found to outperform traditional 
machine learning (ML) approaches in image-based vehicle 
detection, numerous latest studies have utilized conventional 
ML techniques. Xu et al. presented an improved Viola-Jones 
detection method for aerial imagery vehicle detection [20]. 
Derrouz et al. used 3D disparity map features and 2D HoG 
features to classify vehicles using five classifiers: SVM, kNN, 
Random Forest, Decision Tree, and MLP [21]. Cao et al. 
developed a multi-instance, weakly supervised algorithm for 
learning weak labels without formally labelling each object in 
the image. The density map obtained from the positive-
regions was then used to train SVM that classify vehicles [22]. 
These traditional approaches to vehicle detection are not 
appropriate for real-time vehicle detection as they heavily rely 
on hand-crafted features. Deep learning approaches to vehicle 
detection have outshone traditional approaches and many 
deep learning algorithms for vehicle detection have emerged. 
Among these, Faster RCNN 2-stage detector, and YOLO and 
SDD 1-stage detectors are commonly used by the researchers 
for vehicle detection. Many 2-stage detectors outperform 1-
stage detectors in terms of accuracy, but they are not 
appropriate for real-time detection due to their slow 
computation speed, so 1-stage detectors have gained more 
popularity in recent years. Faster RCNN is a 2-stage vehicle 
detector that uses RPN in the first stage to generate feature-
maps and then uses these feature-maps to detect vehicles in 
the second stage. Faster RCNNs generally struggled to detect 
small vehicles; to address this issue, Deng et al. used a two 
CNN-based architecture known as coupled RCNN [23]. 
Tayara et al. presented FCRN [24], which not only addressed 
the issue of small size of vehicle in aerial images, but also 
overcame the challenges of detecting different types of 
vehicle and orientation from aerial images. Various backbone 
networks were also investigated by different researchers in 
order to enhance the efficiency of Faster RCNN for vehicle 
detection and classification [25-27]. SSD, on the other side, is 
a 1-stage detector that detects variable-size vehicles using 
different scales and aspect ratios. The researcher 
demonstrated various SSD improvements for detecting 
vehicles from images, including Oriented-SSD [28], 
Inception-SSD [29,30], FPES [31] based SSD, and FGSC-
SSD [32]. SSD models, like Faster RCNN, are slower than 
the YOLO family, making YOLO more appropriate for real-
time detection of vehicles [33].  YOLOv3, YOLOv4, and 
YOLOv5 used Darknet53, CSPDarknet53, and 

CSPDarknet53 with focus layer backbone, respectively. To 
solve the problem of vehicle orientation in aerial images, the 
authors [34] presented the YOLOv3 model, which used 
sloping bounding boxes, and some researchers [35,36] used 
the Kmeans++ algorithm for calculating anchor boxes and 
soft-NMS. Ni et al. [37] used depth-wise-separable 
convolutional blocks instead of residual blocks in the 
YOLOv4 backbone, and Koay et al. [38] demonstrated an 
improvement in tiny YOLOv4 for vehicle detection. Daniel et 
al. proposed an improved tiny and light-weight YOLOv5 [39] 
vehicle detection mechanism that used a multi-scale 
mechanism to detect variable-sized vehicles. Benjumea et al. 
modified the architecture of YOLOv5 and generated series of 
models to detect extra small objects [40].  
 It is challenging to determine which member of the YOLO 
family—YOLOv3, YOLOv4, and YOLOv5—is more 
accurate due to the variety of experimental setups used by the 
researchers, including the use of various datasets, dataset 
complexity, hyper-parameters, etc. We evaluated these three 
YOLO models, as well as our proposed model MIRYO, in 
this article using similar hyper-parameters and datasets. 
 
 
3. Proposed Methodology 
 
Numerous DL based techniques for vehicle detection have 
previously been used, but vehicle detection in noisy images is 
still considered a difficult task. Low-light, low-resolution, and 
other environmental noise have a significant impact on 
images, significantly reducing the efficiency of vehicle 
detection systems. This study developed MIRYO, a hybrid 
DL model based on MirNet-v2 and modified Yolov3 for 
detection of vehicle in challenging images. The detection task 
was completed by developing a two-stage pipeline. In the 
first-stage of this pipeline, pre-trained MIRNet-v2 was used 
to reduce noise and improve image contrast in low-quality 
challenging images. We used modified YOLOv3 in the 
second stage of this pipeline to detect and recognize vehicles 
in images.  Our proposed model MIRYO's fundamental 
schematic diagram is illustrated in Figure 1. 
 

 
Fig. 1. Fundamental schematic diagram of hybrid model MIRYO 
 
3.1 MIRNet-v2 
Image degradations of different degree are frequently 
encountered as a result of the acquisition process due to the 
physical constraints of cameras or because of challenging 
lighting conditions or environmental conditions. The 
performance of vehicle detection from image has suffered as 
a result of this degraded low quality image. To address this 
issue, the quality of noisy images is improved in the first-stage 
of MIRYO by using pre-trained MIRNet-v2. MIRNetv-2 
applies a convolutional layer to a low-quality noisy input 
image to extract low-level features, which are then passed to 
various recursive residual groups to extract deep features. 
These deep features are then passed to a convolutional layer, 
and the output of the convolutional layer is concatenated with 
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the input images to produce a restored image as a MIRNet-v2 
block output. 
 
3.2 Modified YOLOv3 
Figure 2 depicts the detailed architecture of a modified 
YOLOv3 inspired by the YOLOv3 architecture. The 
backbone network is responsible for extracting features and 
consist of stack of bottleneck block and conv2D blocks. 
Bottleneck block reduce the computational cost of network 
and over-fitting problem. The structure of these blocks are 
shown in Figure 3a and 3b. Additionally, the SPPF block is 
added to Darknet53 backbone in modified YOLOv3, which is 
faster than SPP block to speed up network performance and 
increase accuracy in real-time vehicle detection. Figure 3c 
depicts the SPPF block in which input is passed through 1x1 
conv2D layer and then three 5x5 max-pooling layers and the 
output of max-pooling layers and previous 1x1 conv2D layer 
is concatenated and passed to 1x1 conv2D layer to produce 
fixed length output. Instead of ReLU [41] activation, we used 
the SiLU [42] (Sigmoid-weighted Linear Unit) activation 
function in the cov2D block of modified YOLOv3. 
 The neck section of the modified YOLOv3 is identical to 
the original YOLOv3, which used a feature pyramid network 
(FPN) [43] to extract feature maps from various stages with 
different object scales and sizes, which are made up of many 
bottom-up and top-down paths. A backbone network feature 
map and our up-sampled features are also combined via 
concatenation; by doing so, we may extract more insightful 
semantic information. The detection head consists of three 
YOLO layers that makes prediction at three different scales. 
It predicts three boxes at each scale, so the tensor at output 
layer for MIOTCD is NxNx48 (size at each 
scale*(3*(5+number of classes)) and NxNx24 for highway 
dataset. 
 To produce new anchors as per the datasets used in this 
research we utilized k-means clustering algorithm that 
analyzes the datasets and 9 clusters and 3 scales are sorted. 
The new 9 clusters on MIOTCD were: (22x23), (43x32), 
(36x65), (74x57), (102x95), (120x169), (169x126), 
(219x206), (361x328),  and on Highway dataset were: (8x13), 
(13x22), (20x 33), (30, 48), (46, 72), (64, 108), (81,167), 
(114,131), (131,223). Non-max suppression (NMS) has been 
utilized to select one bounding box for each object and 
removes the remaining redundant detected boxes. 
 YOLOv3 employs three types of losses: class loss for 
classification, object loss for objectness, and box loss for 
regression. Class loss and object loss both used binary cross-
entropy (BCE) loss; the difference is that class loss only 
calculates the loss of positive data, whereas object loss 
calculates the loss of all instances. In YOLOv3, predicted box 
regression loss is calculated using IoU loss, but when IoU is 
equal to zero, IoU loss fails to optimize the model, so GIoU 
[44] is used in the modified YOLOv3 block of the proposed 
model to overcome this issue. Equations 1 and 2 are used to 
calculate IoU and IoULOSS, whereas equations 3 and 4 are used 
to calculate GIoU and GIoULOSS. 
 
𝐼𝑜𝑈 = |"!#""#|

|"!∩""#|
       (1) 

 
𝐼𝑜𝑈%&'' = 1 − 𝐼𝑜𝑈	      (2) 
 
𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 − |(\("!#""#)|

|(|
      (3) 

 
𝐺𝐼𝑜𝑈%&'' = 1 − 𝐺𝐼𝑜𝑈	      (4) 
 

where Bp and Bgt are predicted and ground-truth boxes, C is 
convex shape between Bp and Bgt. 
 

 
Fig. 2. Modified YOLOv3 block of MIRYO 
 

 
Fig. 3. a. Cov2D block, b. Bottleneck block, c. SPPF block, and d. 
Convolutional Set  
 
 
4. Experimental Setup 
 
4.1 Datasets 
 
4.1.1 MIOTCD Dataset 
The MIOTCD dataset, published by Luo et al. in 2018, was 
chosen as the first dataset for evaluating the proposed model. 
It includes 137,743 images collected by thousands of cameras 
mounted across Canada and the United States, with a variety 
of challenges such as complicated weather conditions, traffic 
density, different time periods, varying image quality, 
dynamic vehicle size, different lighting conditions, and so on. 
The dataset include eleven vehicle classes and 416,277 
annotation instances of different vehicles sizes. We chose 
15,000 images at random from a total of 137,743 for this 
experiment, with 47,945 annotation instances of various 
vehicle sizes, as shown in Figure 4. 
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Fig. 4. Number of vehicle instances and classes in a selected dataset1 
from MIOTCD 
 
4.1.2 Highway Dataset 
The Highway dataset, published by Song et al. in 2019, was 
chosen as the second dataset for evaluating the proposed 
model. It is a collection of 11,129 high-quality (1920x1080) 
colored images captured by 23 roadside cameras on a 
highway in Hangzhou, China at various times, locations, and 
lighting conditions. The dataset instances include three 
vehicle classes and 57,290 annotation instances of different 
vehicles sizes, as shown in Figure 5. 
 

 
Fig. 5. Number of vehicle instances and classes in Highway dataset 
 
4.2 Experimental Environment 
On an Nvidia GTX 1080Ti GPU with 48 GB RAM running 
Ubuntu, we trained our models MIRYO, YOLOv3, YOLOv4, 
and YOLOv5. Each network is trained using the identical 
parameters. We set the input network size to 608x608 pixels 
during the training stage. Mosaic, left-right scaling and 
flipped transformations were used for data augmentation. 
Weights were optimized using the SGD algorithm, which had 
a momentum of 0.9, a weight decay of 0.0005, and an initial 
learning rate of 0.01. We trained the network for 80 epochs. 

We evaluated these models on two different datasets: a high-
resolution highway dataset and a complicated MIOTCD 
dataset. We randomly selected 15,000 images from MIOTCD 
out of 137,743 images and 11,129 images from the highway 
dataset to create a train, validation, and test set with a 70%, 
20%, and 10% ratio, respectively. 
 
4.3. Evaluation Metrics 
We used precision (P), recall (R), F1-score and mean average 
precision (mAP) [45] metrics to evaluate the MIRYO and 
compare it to YOLOv3, YOLOv4, and YOLOv5. P measures 
the model's prediction accuracy and is defined in equation 5. 
R measures the model's ability to recognize all ground truths 
and is defined in equation 6. The F1-score is calculated using 
the harmonic mean of P and R, which is defined in equation 
7. The mAP is determined by averaging the average precision 
(AP) of all classes and is defined in equation 8. 
 
𝑃 = ,-

,-./-
		       (5) 

 
𝑅 = ,-

,-./0
	       (6) 

 
𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (-∗2)

(-.2)
	      (7) 

 
𝑚𝐴𝑃 = 3

4
∑ 𝐴𝑃54
563 			      (8) 

 
where TP, FP, and FN stand for true-positive, false-positive, 
and false-negative, respectively. 
 
 
5. Result and Discussion 
 
We evaluated the effectiveness of proposed hybrid model 
MIRYO on two datasets, MIOTCD and Highway, and 
compared its performance with YOLOv3, YOLOv4, and 
YOLOv5 in terms of P, R, F1-score, and mAP. The 
performance of these models on two datasets is shown in 
Table 1 and Table 2, with the highest scores outlined in bold. 
For training, validation, and testing, 10500, 3000, and 1000 
images were chosen from the MIOTCD dataset, respectively, 
and 7790, 2225, and 1114 images were chosen from the 
highway dataset, respectively. According to the experimental 
results, MIRYO achieved the highest precision of 79.7% and 
mAP50 of 76.9% on the MIOTCD dataset. On the highway 
dataset, MIRYO achieved the highest F1-score of 91% and 
mAP50 of 94.8%, which is extremely close to the mAP50 of 
94.9% achieved by YOLOv4. The proposed model with 10% 
of dropout and CIoU loss function achieved 75.5% mAP and 
94.4 % mAP on MIOTCD and the highway dataset 
respectively.   
 Also, the efficacy of MIRYO evaluated on high resolution 
highway dataset with inclusion four type of artificial noises 
Gaussian, SNP, Poisson, and speckle noise which is shown in 
Table 3. This investigation of noise models is necessary for 
the removal of noise from images, which is actually needed 
for better prediction results. 

 
Table 1. Performance of vehicle detection models on MIOTCD Dataset 

Models 
MIOTCD Dataset (11 Vehicle classes) Inference 

Time (ms) 
P R F1-Score mAP50 

YOLOv3 0.763 0.721 0.74 0.751 8.5 
YOLOv4 0.79 0.85 0.82 0.74 14 
YOLOv5 0.754 0.718 0.74 0.75 5 
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MIRYO without MIRNET 0.783 0.691 0.73 0.75 8.3 
MIRYO with MIRNET (ours) 0.797 0.704 0.75 0.769 8.2 

 
Table 2. Performance of vehicle detection models on Highway Dataset 

Models Highway Dataset (3 vehicle classes) Inference Time 
(ms) P R F1-Score mAP50 

YOLOv3 0.916 0.899 0.91 0.945 7.5 
YOLOv4 0.85 0.94 0.89 0.949 12 
YOLOv5 0.907 0.899 0.90 0.948 4.4 
MIRYO without MIRNET 0.907 0.899 0.90 0.946 7.2 
MIRYO with MIRNET (ours) 0.914 0.898 0.91 0.948 7.2 

 
Table 3. Performance of MIRYO on Highway dataset with different noise 

Noise Gaussian SNP Poisson Speckle 
Class P R mAP50 P R mAP50 P R mAP50 P R mAP50 
all 0.917 0.894 0.945 0.914 0.898 0.948 0.905 0.905 0.944 0.885 0.867 0.919 
truck 0.926 0.921 0.965 0.926 0.923 0.967 0.919 0.924 0.964 0.907 0.894 0.949 
bus 0.911 0.89 0.933 0.906 0.893 0.938 0.899 0.901 0.93 0.874 0.853 0.905 
car 0.915 0.871 0.938 0.908 0.879 0.938 0.898 0.891 0.938 0.874 0.853 0.904 

 
 The class-wise mAP50 and Precision-recall (PR) curve of 
proposed model MIRYO on MIOTCD is shown in Figure 6. 
MV category of MIOTCD achieved very less mAP50 due to 
its small physical appearance. The authors of MIOTCD 
achieved a mAP50 of 80.36% using YOLOv4 model assuming 
that if MV vehicle detected in AT, B, C, PT, SUT, or WV, 
then it will be treated as true-positive because MV are too 
small to fit into a particular category. We didn’t consider them 
as true-positive hence achieved comparatively lower mAP50.  
 

 
Fig. 6. PR Curve and class-wise mAP50 of MIRYO on MIOTCD dataset 
 
 The class-wise mAP50 and Precision-recall (PR) curve of 
proposed model MIRYO on highway dataset is shown in 
Figure 7. The authors of the highway dataset achieved a 
mAP50 of 87.88% using the YOLOv3 model, while we 
achieved 94.8%. Furthermore, the number of classes in the 
dataset and the quality of the dataset both have an impact on 
model performance. MIOTCD dataset images with eleven 
vehicle classes are low resolution images captured in 
challenging environmental conditions such as darkness, 
snow, and clouds, whereas highway dataset images with three 
vehicle classes are high resolution images. As a result, the 
overall mAP50 of the challenging MIOTCD is lower than that 
of the high-quality highway dataset.  
 The Confusion matrix in Figures 8 and Figure 9 depicts 
the number of correct and incorrect predictions per class made 
by MIRYO on the MIOTCD and Highway datasets. 
 The sample real-time detection of vehicle by MIRYO in 
MIOTCD, Highway and our private data captured by camera 
installed at our institute (AIT, Pune) main gate is shown in 
Figure 10. 
 

 

 
Fig. 7. PR Curve and class-wise mAP50 of MIRYO on Highway dataset 
 

 
Fig. 8. Confusion Matrix of MIRYO on MIOTCD dataset 
 

 
Fig. 9. Confusion Matrix of MIRYO on the Highway dataset 
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Fig. 10. Sample detection results on MIOTCD, Highway and Private 
Dataset 
 
 
6. Conclusion 
 
In this paper, we proposed MIRYO, a hybrid model that used 
pre-trained MIRNetv-2 and modified YOLOv3 models to 
detect vehicles in low and high quality images. The hybrid 
model MIRYO was evaluated on two baseline datasets: the 

complicated low-quality MIOTCD dataset and the high-
resolution Highway dataset. In terms of mAP, the proposed 
model outperformed existing YOLOv3, YOLOv4, and 
YOLOv5 models. On the MIOTCD dataset, the proposed 
model MIRYO achieved an overall mAP of 76.9%, while 
YOLOv3, YOLOv4, and YOLOv5 achieved 75.1%, 74%, 
and 75%, respectively, and a mAP of 94.8% on the Highway 
dataset, while YOLOv3, YOLOv4, and YOLOv5 achieved 
94.5%, 94.9%, and 94.8%, respectively. MIRYO's 
performance on the highway dataset was very close to that of 
YOLOv3, YOLOv4, and YOLOv5, but on the MOITCD 
dataset, MIRYO achieved a minimum 2% improvement over 
YOLOv3, YOLOv4, and YOLOv5. As a result, we can 
conclude that MIRYO, our hybrid model, detects vehicles 
more reliably in noisy images. The accuracy of smaller 
objects still needs to be improved, which we will work on in 
the future. 
 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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