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Abstract 
 

Insulators are indispensable components of high-speed railway overhead contact systems (OCS), continuously subjected 
to environmental stressors such as lightning, heavy rainfall, strong winds, and ice or snow accumulation. Extreme 
climatic conditions, including high and low temperatures, also pose further risks of degradation. At present, insulator 
defect detection predominantly relies on manual data collection and analysis, which is inherently limited in efficiency and 
accuracy, increasing the likelihood of missed detections and false positives. To address the challenge of intelligent defect 
detection for OCS insulators, this study proposed a novel detection framework that integrates insulator positioning and 
precise defect identification, leveraging the YOLO-v11 network. Initially, an insulator device positioning model (IDPM) 
was employed to locate insulators within OCS inspection images. Subsequently, an insulator defect detection model 
(IDDM) was utilized to identify insulator defects with high precision. Furthermore, a comprehensive OCS inspection 
image dataset, encompassing 20,000 images of silicone rubber insulators and ceramic insulators, was constructed. 
Experimental evaluations on this dataset demonstrate that the IDPM achieves an accuracy of 0.976 and a recall rate of 
0.987 in insulator localization. On this basis, the IDDM attains an accuracy of 0.954 and a recall rate of 0.910 in insulator 
defect detection. Comparative analysis indicates that the proposed method surpasses five state-of-the-art insulator defect 
detection approaches, highlighting its significant potential for application in OCS maintenance and defect analysis. This 
research facilitates intelligent status monitoring of OCS insulators, mitigating reliance on manual inspection and 
contributing to the advancement of automated and intelligent maintenance strategies for high-speed railway systems. 
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1. Introduction 
 
The overhead contact system (OCS) is a critical power 
supply system for high-speed railway operations [1-2]. 
Insulators play an essential role within the OCS by 
providing electrical insulation, mechanical support, and 
potential regulation. If insulator defects occur, then their 
electrical insulation performance significantly deteriorates, 
posing severe threats to railway operation safety [3-4]. 
Therefore, insulator condition monitoring is crucial. The 
implementation of intelligent defect detection technology 
can mitigate the risks associated with insulator damage, 
ensuring the stable operation of the high-speed railway 
power supply system. Current insulator detection methods 
predominantly rely on manual data acquisition and analysis. 
However, when dealing with large volumes of inspection 
data, manual processing is inherently slow, preventing real-
time monitoring and limiting the timely detection and 
resolution of sudden insulator failures [5-6]. Furthermore, 
manual detection is susceptible to subjectivity, increasing 
the likelihood of missed detections and false positives. In 
addition, due to the high resolution of OCS inspection 
images, insulator defects occupy only a small portion of the 
image, further complicating the detection process. Therefore, 
achieving accurate and efficient intelligent defect detection 
is essential for identifying potential safety hazards and 

enhancing the reliability of the railway power supply system. 
Deep learning has revolutionized computer vision, 

expanding its applications across various domains [7-8]. 
However, in OCS inspection image analysis, existing 
methods remain largely pattern recognition-based or direct 
applications of conventional deep learning networks [9-10], 
lacking in-depth adaptation to real-world scenarios. To 
address this issue, this study proposed an intelligent 
insulator defect detection approach based on YOLO-v11 
[11], carefully designing the analysis workflow to 
accommodate the characteristics of OCS inspection images. 
First, an insulator device positioning model (IDPM) was 
employed to locate insulators in inspection images. 
Subsequently, an insulator defect detection model (IDDM) 
was used for precise defect identification. In addition, a 
dataset comprising 20,000 OCS inspection images was 
constructed. Experimental results demonstrated that the 
proposed method is well-suited for intelligent insulator 
defect detection, outperforming five state-of-the-art 
approaches in detection performance. Furthermore, the 
proposed model exhibited superior generalization 
capabilities across different insulator types (ceramic 
insulators and silicone rubber insulators). These findings 
underscore the substantial application potential of the 
proposed method in the field of insulator defect detection. 
This study contributes to the intelligentization of insulator 
defect detection, enhancing OCS condition monitoring 
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efficiency and facilitating the advancement of intelligent 
high-speed railway maintenance. 
 
 
2. State of the art 
 
Insulators are exposed to complex and ever-changing natural 
environments [12-13], and current insulator defect detection 
predominantly relies on manual data acquisition and analysis, 
which fails to promptly identify and resolve faults, leading 
to a high risk of missed detections and false positives [14-
15]. Therefore, developing accurate and efficient intelligent 
defect detection methods is of great significance for ensuring 
high-speed railway safety. Several studies have explored 
traditional pattern recognition-based approaches for insulator 
defect detection. Reference [9] utilized Hu invariant 
moments and histogram of oriented gradients (HOG) 
features in combination with support vector machines (SVM) 
for defect identification. Reference [16] fused pyramid HOG 
and BOW–SURF features, employing SVM classification 
for defect detection. Reference [17] detected insulator 
defects using Harris corner detection and image differencing 
techniques. These pattern recognition-based methods rely on 
handcrafted feature design and were limited in their ability 
to capture diverse defect patterns, restricting their 
generalization to various defect types. Deep learning, with 
its superior feature representation capability, enables 
automatic extraction of critical features from images [18-19], 
maintaining high performance even in complex scenarios 
[20-21]. Consequently, researchers have integrated deep 
learning into insulator defect detection. Reference [22] 
proposed an insulator defect detection approach based on 
YOLOv5, incorporating a bidirectional feature pyramid 
network and squeeze-and-excitation attention mechanism to 
enhance detection performance. Reference [23] optimized 
the YOLOv8 network architecture to improve defect 
detection accuracy. Reference [24] introduced Insu-YOLO, 
a detection algorithm that fuses multiscale features to 
enhance insulator defect recognition. Reference [25] further 
optimized YOLOv8’s architecture and training strategies to 
improve detection precision. Reference [26] developed an 
insulator defect detection method based on YOLOv5. 
Reference [27] incorporated Swin Transformer to refine 
Faster R-CNN, improving defect detection performance in 
complex backgrounds. Reference [28] introduced high-
resolution feature maps, an adaptive spatial feature fusion 
module, and a deformable attention mechanism to construct 
a more robust insulator defect detection framework. 
However, the above methods lack in-depth research adapted 
to real-world scenarios. The implementation of intelligent 
detection systems for insulator defects in catenary presents 
several challenges, as discussed below. 
 First, existing methods primarily focus on pattern 
recognition and the application of classical deep learning 
networks, lacking in-depth research adapted to real-world 
scenarios. 
 Second, insulator defect detection methods for catenary 
that rely on pattern recognition require an analytical model 
based on prior knowledge, resulting in poor detection 
performance, insufficient generalization ability, and 
susceptibility to missed and false detection. 
 Third, the background of catenary inspection images is 
complex and susceptible to interference from factors such as 
illumination and obstacle occlusion. The small size of 

insulator defects relative to the inspection images 
significantly increases the detection challenges. 
 Fourth, the evaluation of detection methods for insulator 
defects suffers from a scarcity of authentic and 
representative image datasets. The results did not adequately 
demonstrate the capability of these methods to suppress false 
alarms. 
 To address the above issues, this study proposed a 
framework specifically designed for insulator defects. 
Initially, an IDPM was employed to localize insulators 
within catenary inspection images. Subsequently, an IDDM 
was used to perform precise defect identification. A catenary 
inspection image dataset was also constructed to test the 
performance of the proposed method and compared it with 
five existing methods. The remainder of this study is 
structured as follows. Section 3 describes the methodology, 
Section 4 presents experimental procedures along with result 
analysis, and the last section concludes this study. 
 
 
3. Methodology 
 
This study focuses on the construction of an OCS inspection 
image dataset and the development of an intelligent insulator 
defect detection method. 
 As illustrated in Fig.1, the proposed intelligent insulator 
defect detection method consists of two main stages. First, 
the IDPM is employed to locate insulators in the inspection 
images. Next, the IDDM is used to identify insulator defects. 
If the IDPM fails to detect any insulators, then the image is 
classified as a non-target image. If an insulator is detected, 
then the process proceeds to defect identification. If the 
IDDM detects an insulator defect, then defect information is 
outputted; otherwise, the image is classified as a non-target 
image. 
 

 
Fig. 1.  Intelligent detection method for insulator defects  
 
3.1 OCS inspection image dataset 
The OCS inspection image dataset consists of silicone 
rubber insulators and ceramic insulators, as detailed in Table 
1, with representative images shown in Fig.2. This dataset 
comprises 20,000 images, all with a resolution of 
5120×5120 pixels, and each image contains at least one 
insulator. Particularly, 4,000 images contain defective 
insulators, whereas 16,000 images contain normal insulators. 
The inclusion of a large proportion of normal insulators is 
intended to evaluate the false positive suppression capability 
of different detection methods, aligning with the actual data 
distribution in inspection images. Based on the OCS 
inspection image dataset, an insulator device image dataset 
was further constructed, which includes 20,000 insulator 
device images, as shown in Table 2, with representative 
examples provided in Fig.3. 
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Table 1. Distribution of imaging conditions in the image dataset 
Silicone Rubber Insulator Ceramic Insulator Total 

number proportion number proportion number 
10000 50.0% 10000 50.0% 20000 

 
 
Table 2. Distribution of imaging conditions in the image dataset 

Type 
Normal Damaged Total 

Proportion Number Proportion Number Proportion Number 
silicone rubber insulator 8000 40.0% 2000 10.0% 10000 50.0% 

ceramic insulator 8000 40.0% 2000 10.0% 10000 50.0% 
total 16000 80.0% 4000 20.0% 20000 100.0% 

 
 

 
(a) OCS inspection image (including silicone rubber insulators) 
 

 
(b) OCS inspection image (including ceramic insulators) 
Fig. 2.  Typical inspection images of high-speed railway OCS 
 

 
(a) Silicone rubber insulators 

 
(b) Ceramic insulators 
Fig. 3.  Typical images of insulator devices 
 
 During image annotation, professional OCS inspection 
personnel manually labeled insulators within the images and 
classified their insulator types. If an insulator defect was 
present, then the defect type and location were annotated 
accordingly. 
 
3.2 Insulator device positioning 
Based on an analysis of the characteristics of OCS 
inspection images, the YOLO-v11 network was selected as 
the backbone of the IDPM. If no insulators are detected in 
the inspection image, then the image is classified as a non-
target image. If insulators are detected, then the process 
proceeds to insulator defect identification, as illustrated in 
Fig.4. 

 
Fig. 4.  Positioning process of insulator devices 
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The process of insulator positioning by the IDPM 
model within the OCS inspection image dataset  can 
be expressed as follows: 
 

,       (1) 
 
where  represents the i-th image in the dataset , and 

 denotes the detected insulator type in the corresponding 
image (silicone rubber insulator si and ceramic insulator 
ci). 
 
3.3 Insulator defect identification 
Insulator defects exhibit significant variation in their 
appearance within images, presenting diverse shapes and 
sizes, which increases the complexity of identification. For 
the detected insulator device images, uniform scaling is 
initially applied, followed by defect identification using the 
IDDM, as illustrated in Fig.5. The YOLO-v11 network was 
selected as the backbone for the IDDM. After size 

normalization, the insulator image was inputted into the 
IDDM. If no defect is detected, then the image is classified 
as a non-target image. If a defect is identified, then the 
system outputs the defect type and location. 
 Defect identification within the insulator device image 
dataset  can be expressed as follows: 
 

,																			 	 		 (2) 

 
where  represents the j-th image in the dataset , and 

 denotes the detected defect type  in the corresponding 

image (silicone rubber insulator defect  and ceramic 
insulator defect ) 
. 

 
Fig. 5.  Recognition of insulator damages 
 
3.4 Key technologies: YOLO-v11 network 
The IDPM and IDDM adopt YOLO-v11, whose network 
architecture is illustrated in Fig.6. The model consists of 
three main components: backbone, neck, and head. By 
integrating Transformer, Mosaic data augmentation, and 
spatial pyramid pooling (SPP) and combining cross-layer 
feature fusion with a dynamic anchor strategy, the detection 
performance is significantly enhanced. 

(i) Backbone: It is responsible for feature extraction, 
composed of C3K2 and C2PSA modules. It utilizes the SPP 
module to fuse multi-scale features. 

(ii) Neck: It integrates and enhances features from 
different layers, generating more robust and discriminative 
feature representations. 

(iii) Head: It predicts detection results, including object 
class, location, and confidence score. 

The loss function of YOLO-v11 is defined in Equation 
(3), incorporating classification loss , bounding box 
regression loss , and distribution focal loss . By 
optimizing classification accuracy, bounding box regression 
precision, and improving handling of hard samples, the 
detection performance is significantly enhanced. 
 

,                                 (3) 
 

 The classification loss  measures the difference 
between the predicted class probabilities and ground truth 
labels. It is based on the cross-entropy loss function, which 
enhances the prediction accuracy for different object 
categories. 
 

,                (4) 

 
where S represents the network grid size,  indicates 
whether the i-th grid cell contains an object,  is the 
predicted probability that the object in the i-th grid cell 

belongs to category c; and  is the ground truth label 
indicating whether the object in the i-th grid cell belongs to 
category c. 
 The bounding box regression loss  optimizes the 
difference between the predicted and ground truth bounding 
boxes. It commonly employs intersection-over-union metrics 
to measure bounding box overlap, guiding the network’s 
learning process. 
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,      (5) 

 
where S represents the network grid size; B denotes the 

number of bounding boxes predicted by each grid cell;  
indicates whether the j-th bounding box in the i-th grid cell 
is responsible for predicting the target; x and y correspond to 
the center coordinates of the bounding box; w and h denote 
its width and height; and  represents the weight 
coefficient that balances different loss components 

 The distribution focal loss  assigns weights to the 
predicted probabilities of each category, allowing the model 
to identify and prioritize complex samples. 
 

,              (6) 

 
where N is the number of samples, C is the number of 
classes,  represents the ground truth label for the i-th 
sample, and  is the predicted probability that the i-th 
sample belongs to category c. The balancing factor  
adjusts the weight between positive and negative samples, 
whereas  controls the weighting of hard samples. 

 

 
Fig. 6.  Network architecture of YOLO-v11
 
4. Result analysis and discussion 
 
4.1 Experimental setup 
At the beginning of training, the IDPM and IDDM load 
pretrained weights from the COCO dataset, retaining the 
best-performing weights obtained on the training dataset. 
The hardware and software configurations are provided in 
Table 3, and the key parameter settings for YOLO-v11 are 
listed in Table 4. 
 
Table 3. Hardware Configuration & Software Environment 
for the Experiment 
Hardware αnd Software Configuration 

CPU intel core i7 
GPU RTX 3080 12GB (four GPUs) 
RAM 128 G 
SSD 1TB 

Linux Ubuntu 18.04 
Anaconda 3 version 2023.09.0 (64-bit) 

CUDA version 12.1 
cuDNN version 8.2.1 

Table 4. Key parameter settings of YOLO-v11 network 
Parameter IDPM IDDM 

nc 2 2 
names [“SRI”, “CI”] [“SRI_dam”, CI_dam”] 

optimizer Adam Adam 
lr0 0.005 0.003 

weight_decay 0.0005 0.0003 
epochs 120 200 

batch size 4 8 
patience 10 10 

data augmentation used used 
conf 0.5 0.7 

 
4.2 Performance evaluation metrics 
Recall, accuracy, and precision were employed as 
performance evaluation metrics, as defined in Equations (7)–
(9). Higher values indicate better performance. TP denotes 
true positives, and TN denotes true negatives, representing 
the number of correctly detected actual targets and correctly 
rejected non-targets, respectively. FP represents false 
positives, and FN represents false negatives, denoting the 
number of misidentified targets and missed targets, 
respectively. 
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,                                (7) 

 
where recall represents the ratio of correctly detected targets 
to the total number of actual targets. 
 

,                                (8) 

 
where accuracy denotes the proportion of correctly detected 
targets out of all evaluated instances.  
 

,                                (9) 

 
where precision represents the ratio of correctly detected 
targets to the total number of predicted targets. 
 
4.3 Performance comparison of different networks in 
insulator localization 
Table 5 presents the experimental results for YOLO-v11 and 
five other detection networks in insulator localization, with 
results visualized in Fig.7. In Table 5, Row 1 lists the 
network types used in the comparison, including Faster R-
CNN [29], CenterNet [30], EfficientDet [31], YOLO-v5 [32], 
YOLO-v8 [33], and YOLO-v11. Rows 2 and 3 display the 
recall and precision achieved by each network on the test set, 
respectively. Rows 4–5 and 6–7 present the recall and 
precision obtained on the silicone rubber insulator test subset 
and ceramic insulator test subset, respectively. Fig.7(a) 
compares the performance of different networks on the 
overall test set. Fig.7(b) and 7(c) illustrate the performance 
comparison on the silicone rubber insulator test subset and 
ceramic insulator test subset, respectively. 
 According to Table 5 and Fig.7(a), YOLO-v11 
outperforms Faster R-CNN, CenterNet, EfficientDet, 
YOLO-v5, and YOLO-v8 in terms of recall and precision, 
demonstrating superior insulator localization performance. 
As shown in Table 5 and Fig.7(b) and 7(c), for specific 
insulator types such as silicone rubber insulators and 
ceramic insulators, YOLO-v11 achieves higher recall and 
precision compared to the five baseline networks. Faster R-
CNN excessively compresses small-object information, 
leading to missed detections. CenterNet simplifies the 
network structure, improving detection accuracy, but still 
has limitations when handling overlapping center points and 
variations in object size. EfficientDet exhibits good 
detection performance but is challenging to fine-tune. From 
YOLO-v5 to YOLO-v8 and YOLO-v11, the continuous 
introduction of new network structures, optimized anchor 
box mechanisms, and composite-scale feature fusion has 
enabled YOLO-v11 to maintain its leading position in object 
detection. Comparative experiments indicate that YOLO-
v11 is well-suited for insulator localization in high-speed 
railway OCS, achieving robust localization performance in 
complex railway environments while also demonstrating 
strong generalization ability across different insulator types. 
 
4.4 Performance comparison of insulator defect detection 
methods 
To verify the effectiveness of the proposed insulator defect 
detection method, experiments were conducted using the 
insulator device image dataset, and the results were 
compared with five representative methods. The 

experimental results are presented in Table 6, with a bar 
chart visualization shown in Fig. 8. 
 

 
(a) Performance comparison of insulator positioning (silicone rubber 
insulator and ceramic insulator) 

 
(b) Performance comparison of silicone rubber insulator positioning 
  

 
(c) Performance comparison of ceramic insulator positioning  
Fig. 7.  Performance comparison of insulator positioning by different 
detection networks 
 

In Table 6, Row 1 lists the method types, where [16], 
[17], [26], [27], [28], and “proposed” correspond to the 
methods from references [16], [17], [26], [27], [28], and the 
proposed method in this study, respectively. Rows 2–4 
(recall, accuracy, precision) represent the recall, accuracy, 
and precision obtained by each method on the test set, 
respectively. Rows 5–7 and Rows 8-10 (recall (ci), accuracy 
(ci), and precision (ci)) show the corresponding performance 
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metrics on the silicone rubber insulator test subset and ceramic insulator test subset, respectively. 
 
Table 5. Performance comparison of insulator localization by different networks 

 Faster R-CNN CenterNet EfficientDet  YOLO-v5 YOLO-v8 YOLO-v11 
recall 0.9535 0.9605 0.9703 0.9642 0.9781 0.9871 

precision 0.9202 0.9609 0.9721 0.9667 0.9729 0.9769 
recall (si) 0.9518 0.9582 0.9682 0.9626 0.9768 0.9856 

precision (si) 0.9126 0.9567 0.9698 0.9622 0.9706 0.9751 
recall (ci) 0.9552 0.9628 0.9724 0.9658 0.9794 0.9886 

precision (ci) 0.9279 0.9651 0.9745 0.9712 0.9753 0.9788 
 

According to Table 6 and Fig.8(a), the proposed 
method outperforms the five baseline methods in recall, 
accuracy, and precision, demonstrating superior defect 
detection performance. Table 6 and Fig.8(b) and 8(c) further 
indicate that for silicone rubber insulators and ceramic 
insulators, the proposed method achieves higher recall, 
accuracy, and precision, exhibiting better generalization 
capability. Methods [16] and [17] are based on pattern 
recognition techniques, which have limited feature 
extraction capabilities, leading to significantly lower recall 
and precision in defect detection compared to other methods. 
Methods [26], [27], and [28] leverage deep convectional 
networks, achieving relatively high defect detection ability 
(high recall). However, due to limitations in detection 
methodology and constraints of the specific network 
architectures used, they suffer from higher false positive 
rates, resulting in lower accuracy and precision, leaving 
room for improvement. The proposed method fully 
considers the imaging characteristics of high-speed railway 
OCS inspection images and carefully designs the detection 
process. First, it localizes insulators, addressing the 
challenge posed by high-resolution inspection images where 
insulator defects occupy only a small pixel area. Then, it 
performs precise defect identification on the insulator device 
images, effectively reducing false positives and improving 
accuracy and precision. Comparative experiments 
demonstrate that the proposed method is well-suited for 
insulator defect detection in high-speed railway OCS, 
achieving robust performance in complex railway 
environments while also exhibiting strong generalization 
ability across different insulator types. 

 

 
(a) Performance comparison of insulator defect detection methods 
(silicone rubber insulator and ceramic insulator) 

 
(b) Performance comparison of silicone rubber insulator defect 
detection methods 

 
(c) Performance comparison of ceramic insulator defect detection 
methods  
Fig. 8. Performance comparison of insulator defect detection by 
different methods 
 
4.5 Examples of typical results 
This study presents representative examples of the 
intermediate process and final results of insulator defect 
detection. Fig.9 and 10 illustrate insulator localization in 
inspection images, highlighting the algorithm’s accuracy and 
robustness in complex backgrounds. Fig.11 and 12 
demonstrate insulator defect detection, showcasing the 
algorithm’s precise defect identification capability. This 
study also provides the confidence scores of the results, 
enabling inspection engineers to intuitively assess the 
reliability of the detection outputs. Specifically, it presents 
the following:  

(1) Insulator localization confidence score: the 
foreground target probability obtained from the IDPM;  

(2) Insulator defect detection confidence score: the type 
probability output from the IDDM. 
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Table. 6. Performance comparison of insulator defect detection methods 
 [16] [17] [26] [27] [28]  proposed 

recall 0.678 0.670 0.863 0.878 0.870 0.910 
accuracy 0.856 0.826 0.946 0.905 0.917 0.954 
precision 0.172 0.143 0.415 0.280 0.308 0.462 
recall (si) 0.705 0.643 0.848 0.870 0.883 0.905 

accuracy (si) 0.866 0.837 0.944 0.878 0.922 0.950 
precision (si) 0.188 0.147 0.403 0.284 0.325 0.441 

recall (ci) 0.691 0.656 0.855 0.874 0.876 0.915 
accuracy (ci) 0.861 0.831 0.945 0.907 0.919 0.952 
precision (ci) 0.179 0.145 0.409 0.282 0.316 0.451 

 
 

 
Fig. 9. Positioning of silicone rubber insulators in inspection images 

 

 
Fig. 10. Positioning of ceramic insulators in inspection images 

 

 
Fig. 11. Defect detection of silicone rubber insulators. 

 
Fig. 12. Detection detection of ceramic insulators 
 
 

5. Conclusions 
 
For insulator defect detection in high-speed railway OCS, 
this study proposed an intelligent detection method that 
follows a device localization–defect identification strategy. 
First, the IDPM was used to localize insulators from 
inspection images, followed by the IDDM to accurately 
identify defects. In addition, a high-speed railway inspection 
image dataset was constructed. Through insulator 
localization experiments, defect detection experiments, and 
result analysis, the following conclusions are drawn: 

(1) For insulator defect detection, deep learning models, 
utilizing multi-layer neural networks, can automatically 
extract effective features from inspection images, achieving 
significantly superior performance and generalization 
compared to pattern recognition methods. Specifically, recall 
has improved by 0.232–0.240, accuracy by 0.098–0.128, and 
precision by 0.290–0.319. 

(2) The proposed method initially localizes insulators in 
high-resolution inspection images before identifying defects, 
effectively addressing the challenge of detecting small 
defects in high-resolution images using deep neural 
networks. The proposed method achieves a recall of 0.910, 
accuracy of 0.954, and precision of 0.462. 

(3) The choice of detection network architecture 
directly determines the performance of insulator localization 
and defect detection. In addition, the network’s overall 
effectiveness is further influenced by network architecture, 
loss functions, and training strategies. 

(4) The dataset used in experiments must align with the 
real-world distribution of inspection images to effectively 
evaluate the model’s ability to suppress false positives. 
Moreover, the dataset should include silicone rubber 
insulators and ceramic insulators to validate the model’s 
generalization capability. 

The proposed method enables accurate detection of 
insulator defects in high-speed railway OCS, achieving 
higher recall, accuracy, and precision compared to five 
baseline methods. This study contributes to enhancing 
railway operational safety and advancing intelligent 
inspection of OCS. However, this study also has limitations 
that require further refinement, including the need to collect 
more inspection images to improve generalization and 
enable the detection of a wider variety of defect types.  
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