
Journal of Engineering Science and Technology Review 18 (2) (2025) 8-20

Research Article

Artificial Intelligence-based Decoding Algorithms for Binary and Duo-Binary Turbo
Codes

Dharamveer Russeawon1 and Yogesh Beeharry2,*

1Huawei Technologies (Mauritius) Co. Ltd

2Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Mauritius, Réduit, Mauritius

Received 20 July 2024; Accepted 22 March 2025

Abstract

This work proposes the enhancement of Long-Term Evolution (LTE) binary and Digital Video Broadcasting – Return
Channel Satellite (DVB-RCS) duo-binary turbo codes by replacing the conventional Max-Log MAP decoder with a Deep
Learning Neural Network (NN). The binary turbo decoder is replaced with a Recurrent Neural Network (RNN) composed
of two bi-LSTM (bi-Long-Short Term Memory) layers containing 200 hidden units each. The duo-binary turbo decoder is
replaced with DTNET which is an RNN with 2 bi-LSTM layers and comprising 250 hidden units each. All NNs designed
in this work outperform the conventional turbo decoder at !!

""
 values lower than 0 dB. The trade-off for achieving this

performance is the increased computational complexity during the training phase of the model. The algorithms used with
Quadrature Phase Shift Keying (QPSK) modulation generalize for code rates above the code rate trained on. The results
suggest that a “rate-less” and block size-adapting turbo decoder can be achieved by training an RNN with 2 bi-LSTM layers
comprising at least 200 hidden units on the lowest code rate with data from a QPSK modulated communication system.

Keywords: LTE Turbo codes, Duo-Binary Turbo codes, Recurrent Neural Network, bi-Long Short Term Memory, Max-Log-MAP
__

1. Introduction

Paramount importance has been accorded to reliable digital
communication in the modern information age. A key issue in
the communication field is the design of codes to allow robust
and efficient decoding in a noisy channel. Channel coding
was first introduced in 1948 by Claude Shannon in his
landmark paper [1]. The basic idea behind channel coding is
the addition of redundant bits that convey information about
the message bits in the decoding process. According to
Shannon, it is possible to achieve arbitrarily small
transmission errors at a maximum bit rate for any channel.
While it is not possible to operate beyond the Shannon limit
[1], it is stated that creatively and intelligently designed codes
can perform very close to the Shannon limit albeit under
certain restrictions such as block size and the type of channel.
Some landmark codes that approach the theoretical Shannon
limit are Turbo codes, Low-Density Parity Check (LDPC)
codes, and Polar codes.
 With codes operating very close to the Shannon limit, it is
wise to push towards their robustness. In the case of Turbo
codes, the known optimal decoding algorithm is Maximum a-
posteriori (MAP). Due to the computational inefficiency
involving a huge number of multiplication operations, the
MAP algorithm is often not implemented. Instead, LOG-
MAP or MAX-LOG-MAP algorithms are implemented
which are sub-optimal algorithms having cheaper
computational costs. To achieve a better bit error rate (BER)
and higher computational efficiency, there have been attempts
to create a Neural Network (NN) based decoder for Turbo
codes. For a channel decoding task, the input is the noise-
corrupted sequence and the output is the corresponding
encoded noiseless sequence.

 Conventional iterative decoders using the algorithms such
as MAX-Log-MAP rely on approximations and handcrafted
metrics while RNN-based approaches have the property of
learning decoding techniques directly from data. Thus RNN-
based Turbo decoding advances the error correction coding
field significantly enabling improved performances under
varying noise conditions and channel impairments. The data-
driven approach is particularly impactful in low signal-to-
noise ratio (SNR) regimes where the decoding adaptability
and robustness are enhanced. Given that the requirement for
modern communication systems is low latency without
significant degradation in error performance as trade-off,
systems with reduced computational complexity are desired.
RNN-based decoders have been found to fit these
requirements, thereby making them highly suitable for
modern communication systems [2, 3]. Decoding challenges
exist in non-standard channel models for application in IoT
and 5G communications. RNN-based decoding have
demonstrated their ability to address these challenges making
them a suitable candidate [4]. Thus, this work contributes to
the state-of-the-art in turbo decoding through the strong
learning abilities of RNN and providing an efficient and
scalable potential solution for next generation communication
systems.
 This work aims to investigate whether a NN can enhance
the BER performance of conventional binary and duo-binary
Turbo codes. Concerning the works conducted in [5], a
Recurrent Neural Network (RNN) with directionality is
deemed necessary for good performance. The data needed for
the training process is generated using the DVB-RCS duo-
binary turbo encoder and the Long-Term Evolution (LTE)
binary turbo encoder with a modification to the interleaver.
The conventional turbo decoder is replaced with an RNN
comprising 2 bi-LSTM (bi-Long-Short Term Memory) layers

JOURNAL OF
Engineering Science and
Technology Review

 www.jestr.org

Jestr

r

*E-mail address: y.beeharry@uom.ac.mu
ISSN: 1791-2377 © 2025 School of Science, DUTH. All rights reserved.
doi:10.25103/jestr.182.02

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 9

having at least 200 hidden units each. Owing to no previous
works on duo-binary turbo decoding by NN architectures, we
propose an RNN with 2 bi-LSTM layers and 250 hidden units
in each layer. One of the main objectives of this work is to
come up with a code-length and code-rate independent
decoder. The generalization capacity of the RNN is examined
through the use of different block sizes and code-rates input
to the RNN for decoding. The computational complexity lies
in the training of the neural network. However, once the
model is obtained, there is no need for re-training at different
code lengths and code rates.

The paper is organized as follows. Section 2 contains an
overview and theoretical framework surrounding turbo codes
and NNs. Previous works relating to the use of NNs in turbo
decoding are also explored. Section 3 illustrates the
methodology followed for the software implementation of the
NNs for turbo decoding. Section 4 presents the analysis and
discussion of the results obtained with the methodology
followed. Section 5 sheds light on the major findings of this
work and suggests some further works.

2. Overview

The following sub-sections provide a review of the NN-based
decoding of turbo codes and the related parameters used in
previous research. A theoretical framework on the essential
concepts in turbo codes and NNs is also provided.

2.1 Previous Research on NN-based Turbo Decoding
To approach the Shannon limit, several channel codes were
invented. However, these channel codes were the product of
human ingenuity and only came periodically across the
century. As such, there was a need to enhance existing state-
of-art error-correction codes which led to several attempts to
implement channel codes using NNs on various occasions.
Channel codes have been implemented using feedforward
NNs as well as RNNs. The authors in [6] implemented a
feedforward NN using a multilayer perceptron structure. The
BER generated by the neural decoder was close to the optimal
MAP decoder with the latter having a 𝐸#/𝑁$ gain of 0.8 dB
over the neural decoder at a BER of 0.01 for a 37/21 turbo
code. In [7], the BCJR algorithm was reformulated using
matrix manipulations to implement a feedforward NN that
was tested for performance in computer simulations.
 In [8] and [9], an auto-encoder model was used for turbo
encoding and decoding. The authors of [8] introduced the
interleaving process into the neural decoding process. The
results obtained at low Signal-to-Noise ratio (SNR) ranges,
show that the introduction of the interleaving process makes
a significant difference. The performance matches and even
beats the conventional turbo codes whereas the NN trained,
without the interleaving included, performs worse than the
turbo code. However, large block sizes for auto-encoder
training require very large memory which is not feasible
without sufficient computing resources. It is also judged that
the Turbo auto-encoder encounters a lot of difficulty during
the training at high SNRs thereby hindering its learning
process. The loss is the main driving force of the NN training
which pushes the system towards its minimum. Training at
high SNRs causes fewer bits to be in error resulting in a tiny
loss that ultimately makes training very difficult.
 Authors in [5] and [10] use bi-directional gated RNNs to
perform the decoding process. The NN in [10] shows poor
generalization over high SNRs after training a block length of
64 bits with only 3000 training examples and a range of SNR

from -2 to 2 dB. The authors of [5] train a NN for a block size
of 100 using 1.2 million examples but using only one training
SNR which performs much better over the remaining SNRs.
The system also demonstrates generalization over other
longer block lengths.
 With the above-mentioned networks performing the
‘learning to decode’ task, the authors in [11] approach the
problem differently to obtain a network that has fewer
parameters to train by replacing only the iterative decoders
with suitable subnets. Three iterations by the TurboNet in [11]
outperform the LOG-MAP and the MAX-LOG-MAP
algorithms and perform the decoding task in less time and
with fewer parameters than the BCJR RNN used in [5]. A
complexity analysis by the author in [11] shows that the RNN
in [8] has 3.85M trainable parameters as compared to 17.8k
parameters being trained in [11].

2.2 Training Hyper-parameters and parameters used in
other researches
Some of the training parameters and hyper-parameters used
in similar research for the use of NNs in decoding tasks are
given in the following sub-sections.

2.2.1 Training SNR
In [10], an RNN with 2 layers of bi-directional gated recurrent
units (bi-GRU) is shown to outperform the conventional turbo
codes (packet size 64) at low SNR although it lags at higher
SNR. It proposes training 2 separate turbo decoders for high
and low SNRs respectively to counter the problem. The
authors in [8] propose an RNN with a similar structure as [10]
except with batch normalization that is trained for code-rate
½ and a block size of 100. For experiments conducted in [8],
a relationship is derived between the ideal training SNR and
the code rate unlike [10] which uses a set of SNRs ranging
from -2 to 2 dB for training. The NN in [5] matches the
performance of the MAP optimal decoding algorithm. Strong
generalization is shown in [5] as the NN performs equally
well on block sizes of 1,000 and 10,000 when trained on a
block of 100. According to the empirical results derived in
[5], with a turbo code of code rate 𝑟, the training SNR is given
in equation (1).

𝑆𝑁𝑅%&'()(𝑑𝐵) = min	{𝑆𝑁𝑅*+,*(𝑑𝐵), 10 log-$(2.& − 1)} (1)

2.2.2 Amount of data required, Mini-batch size and
optimizer used
According to authors in [5], the number of training examples
that are required to approach the performance of turbo codes
is dependent on the block size used. Additionally, the batch
size must be optimal: too small of a mini-batch size leads to
very slow convergence due to the update at each step whereas
a very large mini-batch size may result in poor generalization
and memory problems. In [5], the two layers of bi-GRU with
200 hidden units are trained with 1.2 million examples to
replicate the turbo code performance with a batch size of 200
(using ADAM optimizer). The authors in [11] find a mini-
batch size of 500 suitable for the training of a block size 40
turbo code with ADAM optimizer.

2.2.3 Learning Rate and Number of Epochs
The learning rate determines the time taken in the training
process as well as its convergence. In [5], the learning rate
chosen is of the order of 10-3 and converges well as its
performance approaches that of turbo codes. The RNN in [11]
converges with a learning rate of 10-5 in a 2-layered bi-LSTM
structure. The epoch signifies the number of times the whole

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 10

training dataset is used in the training process. Similar
research for RNN-based decoding in [5, 10, 11] uses epoch
numbers of 50, 30, and 10 respectively.

2.2.4 Number of Layers and Hidden Units
It is indicated in [5] that one-layer structured RNNs and
single-direction RNNs perform worse than 2-layer RNN
structures. As such, it is deemed important to have a bi-
directional RNN with at least 2 layers for good performance.
Two bi-LSTM layers of 800 units were sufficient to have a
good BER in [11]. Additionally, the author in [10] stipulates
that less than 200 GRU units in the 2-layered NN leads to
divergence during training.

2.3 The Turbo Encoding & Decoding Principles
Turbo codes were invented in 1993 by Claude Berrou [12]
and were the first practical codes to approach the Shannon
limit. Turbo codes find applications in mobile
communication, Universal Mobile Telecommunications
Systems (UMTS), LTE as well as deep-space satellite
communications.

2.3.1 Binary Turbo Encoding & Decoding in the LTE
Standard
Turbo codes are described as a parallel concatenation of
Recursive Systematic Convolutional (RSC) codes. The
details of the Turbo encoder can be obtained from [12][13]
and [14]. Details of the corresponding decoder can be
obtained from [12] and [15].

2.3.2 Max-Log MAP Algorithm
The Log-Likelihood Ratio in this algorithm is computed as
follows:

𝐿(𝑢/|𝒚) = 𝑚𝑎𝑥∗1-A𝐴/2-(𝑠) + Γ/(𝑠3, 𝑠)F + 𝐵/(𝑠)] −
𝑚𝑎𝑥∗1$A𝐴/2-(𝑠) + Γ/(𝑠3, 𝑠)F + 𝐵/(𝑠)]																																	(2)

where,
𝐿(𝑢/|𝒚) represents the log-likelihood ratio for transmitted
symbol 𝑢/ at time instant 𝑘, given the received symbol 𝒚
𝐴 represents the forward metric
𝐵 represents the backward metric
Γ represents the state transition metric
𝑠3, 𝑠 represent the previous and current states respectively
𝑅1 and 𝑅0 denotes the transitions with output bits 1 and 0
respectively

 Details on the computations of the different metrics can
be obtained from [16].

2.3.3 Duo-Binary Turbo Encoding / Decoding
Duo-binary turbo encoder consists of two duo-binary Circular
Recursive Systematic Codes (CRSC) in parallel
concatenation. Details of the duo-binary CRSC encoder used
in Digital Video Broadcasting – Return Channel Satellite
(DVB-RCS) can be obtained from [17].
 Duo-binary turbo codes can also be iteratively decoded
using the usual MAP algorithm. However, there are 4 LLRs
to be computed for Duo-Binary turbo code since the pair (A,
B) can take on 4 values. Modifying the equation for binary
codes, the following is obtained for duo-binary turbo codes:

𝐿𝐿𝑅 = 𝐿𝐿𝑅 = ln 45𝑢/ = 𝑖6𝒚7

45𝑢/ = 𝑖6𝒚7 (3)

where,

y is the received noisy vector,
𝑢/ is the message symbol that can take on values 𝑖 equal to
00, 01, 10 and 11.
 For duo-binary turbo codes, a state has 4 transitions in the
trellis because of 4 possible values of (A, B). Although the
BER of the duo-binary turbo code can be superior to that of
the classical turbo code, the computational complexities and
decoding times increase even more with the number of
iterations.

2.4 Neural Networks
The concept of NNs is derived from the human brain which
consists of synapses and neurons. To recognize an object,
specific neurons are fired in the human brain which has
millions of neurons with billions of connections between
them. Artificial neurons make up an Artificial Neural
Network (ANN) which is commonly called Neural Network
for simplicity. The perceptron is one such artificial neuron
that was conceived in the 1950s by F. Rosenblatt. As shown
in Figure 1, the basic mathematical model around the
perceptron was that for a given number of inputs, X, the
perceptron assigned weights, W to the inputs, and all of them
were added. The output was decided upon a threshold that
would typically be learned in training by going through a
great number of examples and epochs whereby an epoch
represents one pass of the whole dataset into the NN [18].

Fig. 1. Perceptron model

 As a single unit, the perceptron would not be able to make
good decisions about complex problems. However, a network
composed of several layers and a handful number of neurons
in each layer would be able to make a good decision about a
complex problem when given enough training. In a multi-
layered structure, the common intuition is that each layer
performs a feature extraction of increasing abstraction level.
The multilayer perceptron is commonly referred to as Vanilla
NN when there is only one hidden layer. Generally, increasing
the number of hidden layers for a NN helps to better model at
the cost of more training time [19].

Long Short-Term Memory (LSTM)
LSTM networks are commonly used for sequence-to-
sequence learning of long-term dependencies in a sequence.
LSTM networks have gates that are used to selectively
remember relevant information. As a lot of gradients are
multiplied during the backpropagation process, successive
multiplications of gradients much less than 1 tend to zero
which gives rise to a vanishing gradient. With very small
gradients, the error becomes negligible making the NN
incapable of learning whereas exploding gradients cause a
very large change in parameters which can potentially lead to
divergence. The gates incorporated in the LSTM network are

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 11

forget, input, and output gates which help in selective read,
write and forget. The forget gate, in particular, helps in
deterring the vanishing gradient problem [20]. The structure
of the LSTM block is shown in Figure 2 [21].

Fig. 2. LSTM block

 The core elements of the LSTM block are explained in
[22]. The cell and hidden states contain information about the
sequence whereas the gates selectively allow information to
flow in the block. The difference between the cell state and
the hidden state is that the cell state (long-term memory)
stores information over longer time steps than the hidden state
(working memory). The functions of each gate found in the
LSTM block are outlined in Table 1.

Table 1. Function of each gate in the LSTM block

Gate Function

Input
gate

The input gate passes the previous hidden state
and the current input into a sigmoid function to
update the cell state to retain relevant
information.

Output
gate

The output gate determines the hidden state to
be fed to the next block by combining the
previous hidden state, the present input and the
new cell state.

Forget
gate

The forget gate is used to forget information; its
value ranges from 0 to 1 with the value close to
0 meaning forgetting the given information and
1, retaining the information.

 The Long Short-Term Memory (LSTM) is a type of
recurrent neural network (RNN) designed to overcome the
vanishing gradient problem by introducing gating
mechanisms. A step-by-step description of the equations
governing the LSTM structure is as follows:

Step 1: Forget Gate
The forget gate determines which information from the
previous cell state 𝐶*2- should be discarded. It uses a sigmoid
activation function to generate a value between 0 (forget) and
1 (retrain).

𝑓* = 𝜎M𝑊8. [ℎ*2-, 𝑥*] + 𝑏8F (4)

𝑓*: Forget gate vector (shape: n-dimensional)
𝑥*: Current input vector
ℎ*2-: Previous hidden state
𝑊8: Weight matrix for the forget gate
 𝑏8: Bias term for the forget gate
𝜎: Sigmoid activation function

Step 2: Input Gate
The input gate decides what new information to add to the cel
state. It consists of two parts:

1. A sigmoid layer (𝑖*) determines which parts of the
input are relevant.

2. A tanh layer M𝐶*S F creates candidate cell state
update

𝑖* = 𝜎(𝑊(. [ℎ*2-, 𝑥*] + 𝑏() (5)

𝐶*S = 𝑡𝑎𝑛ℎ(𝑊9 . [ℎ*2-, 𝑥*] + 𝑏9) (6)

𝑖*: Input gate vector
𝐶*S : Candidate cell state update
𝑊(,𝑊9: Weight matrices for input gate and candidate state
𝑏(, 𝑏9: Bias terms for input gate and candidate state
𝑡𝑎𝑛ℎ: Hyperbolic tangent activation function

Step 3: Update Cell State
The new cell state 𝐶* is computed by combining the old cell
state 𝐶*2- modulated by the forget gate 𝑓*, and the candidate
state 𝐶*S , modulated by the input gate 𝑖*.

𝐶* = 𝑓* ⊙𝐶*2- + 𝑖*⨀𝐶*S (7)

𝐶*: Updated cell state
⊙: Element-wise multiplication

Step 4: Output Gate
The output gate determines the parts of the cell state 𝐶* that
will be passed to the hidden state ℎ*. This involves applying
a sigmoid function (𝑜*) and modulating the cell state with
tanh (𝐶*).

𝑜* = 𝜎(𝑊:. [ℎ*2-, 𝑥*] + 𝑏:) (8)

ℎ* = 𝑜* ⊙ 𝑡𝑎𝑛ℎ(𝐶*) (9)

𝑜*: Output gate vector
ℎ*: Current hidden state
𝑊:: Weight matrix for the output gate
𝑏:: Bias term for the output gate

3. System Model

The system for the binary Turbo code implemented with
Binary Phase Shift Keying (BPSK) and Quadrature Phase
Shift Keying (QPSK), named TNET and TNETQPSK
respectively, is shown in Figure 3. The packet size of 40 bits
and code rate of ½ are used.

Fig. 3. Overview of the system used

 The different stages involved in the neural turbo decoding
are as follows:

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 12

i. Data processing

ii. Deep NN design
iii. Training of the NN
iv. Testing of the models

 In the data processing stage, 1.2 million packets were
deemed sufficient for training an RNN with 200 bi-GRU units
on a block size of 40 (code − rate = -

.
). The !!

""
(𝑑𝐵) values

used for training the NN with BPSK and QPSK modulation

schemes are 3.010 and 0.0 respectively. These values have
been selected after performing intensive individual
simulations and analyzing the performance with each !!

""
(𝑑𝐵)

value. The testing of the models is performed by generating
new sets of random messages repeating the whole process and
using the NN decoder.

3.1 Deep NN Design for Binary Turbo Codes
The layers used for TNET and TNETQPSK are shown in Fig.
4.

Table 2 shows the activations and learnables in TNET and
TNETQPSK. A summary of the main parameters and hyper-
parameters considered for the training of TNET and
TNETQPSK are given in Table 3.

Fig. 4. Layers used for TNET and TNETQPSK.

Table 2. Activations and learnables in the TNET and TNETQPSK.

Layer Activations Input weights Recurrent Weights Bias Learnable
Sequence input 1×80×1 - - - 0
Flatten 80 - - - 0
Bi-LSTM 400 1600×80 1600×200 1600×1 449600
Dropout 400 - - - 0
Bi-LSTM 400 1600×400 1600×200 1600×1 961600
Dropout 400 - - - 00
Fully connected 2 2×80 - 2×1 802
SoftMax 2 - - - 0
Classification - - - - 0
Total learnable 1412002

Table 3. Summary of training parameters for TNET and
TNETQPSK

Parameter Value/Setting
Block size trained 40
Code-rate used 1

2
Number of training examples 1.08 million
Optimiser ADAM
Mini-batch size 500
Learning rate 3×10-3

Epoch number 100
L2 regularisation constant 10-4

 The performance of the models was tested using three
criteria: the validation accuracy during training, the BER
performance against MAX-LOG-MAP and the generalization
capability. 10% of the 1.2 million packets generated are used
for validation purposes. As all data were generated randomly
with no specific correlations between successive sequences,
it was deemed appropriate to select the last 10% of the 1.2
million training examples for validation data. The validation
frequency is set at 500 to monitor the training progress and
any divergence. The BER performance is computed after
decoding and de-multiplexing the noisy sequence. This
predicted sequence is then compared against the expected
sequence.
 The generalization capability of the model can be tested
by passing different block sizes into NN and examining the
BER performance.

a. Different code rates other than the rate trained on can also

be tested to see if the models can adapt to them. The code

rates at which the generalization is tested are
;
..
, ;
.$
, ;
-;
, ;
-<
, ;
-=
, ;
->
, ;
-?
, ;
-.

. These code rates are divided
into smaller code rates: ;

..
, ;
.$
, ;
-;
, ;
-<

 and bigger code rates
;
-<
, ;
-=
, ;
->
, ;
-?
, ;
-.

. Code-rate ℎ𝑎𝑙𝑓	𝑖𝑠 kept into both BER
graphs as a point of reference for comparison among all
code-rates.

b. Similar to the analysis done for code rate, the models are
also used to decode different block sizes other than the
block sizes used for training. Small and large block sizes
used in the LTE standard are employed in the analysis for
generalization evaluation for smaller blocks. The smaller
block sizes tested are 40, 48, 56, and 64 bits whereas the
bigger block sizes tested are 400, 200 and 96. The block
size of 40 is also included in the BER graph for a bigger
block size as a point of reference for ease of comparison.

3.2 Deep NN Design for Duo-Binary Turbo Codes
The NN trained for duo-binary turbo code is named DTNET.
Due to the computational constraints imposed by the lengthy
sequence length of the duo-binary turbo code, it becomes
increasingly difficult to train the network with voluminous
data. Since the duo-binary turbo code is composed of 2-bit
streams with 48-bit size each, 1.2 million packets (inclusive
of validation data) were thus generated for the training of
DTNET. The training `!!

""
a was set to 0 dB.

 As no previous work has been done for duo-binary turbo
codes in the context of NN decoding, the layers shown in Fig.
5 were proposed for the training process. The proposed
network is based on intuition following the one for binary
Turbo codes. To minimize the complexity of the network and
shorten the training time, only 2 bi-LSTM layers were used

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 13

for DTNET. However, the number of hidden units was
increased to 250 to better model the more complex decoding

process. The dropout layers and L2 regularisation were used
to avoid overfitting.

Table 4 shows the activations and learnables for DTNET. As
the demultiplexed received vector is fed to DTNET, the
sequence length is always 288, regardless of the rate although
the punctured elements are replaced with zeros.

Fig. 5. Layers used for DTNET

Table 4. Activations and learnable for DTNET
Layer Activations Input weights Recurrent Weights Bias Learnable
Sequence input 1×288×1 - - - 0
Flatten 288 - - - 0
Bi-LSTM 500 2000×288 2000×250 2000×1 1078000
Dropout 500 - - - 0
Bi-LSTM 500 2000×500 2000×250 2000×1 1502000
Dropout 500 - - - 0
Fully connected 2 2×500 - 2×1 1002
SoftMax 2 - - - 0
Classification - - - - 0
Total Learnable 2581002

 A summary of the main parameters and hyper-parameters
considered for the training of DTNET is given in Table 5. Due
to the huge computational load imposed by training long
sequence length (288 bits for 48-bit frame size for duo-binary
turbo code), the epoch number was set to 5.

Table 5. Summary of training parameters

Parameter Value/Setting
Frame Size 48
Code-rate 1

2
Number of training examples 1.08 million
Optimiser ADAM
Mini-batch size 200
Learning rate 3×10-3

Epoch number 5
L2 regularisation 10-4

 The same criteria as with binary Turbo codes are used to
test the performance of DTNET. The training and validation
accuracy are first examined. A BER comparison is then done
with the conventional duo-binary turbo decoding. Its
adaptability with other code rates and block sizes is evaluated
through the generation of different BER graphs on different
code rates and frame sizes.
 The frame sizes for which DTNET is tested are 48, 64,
212 and 440 (used in DVB-RCS standards [17]). 48 and 64
bits are the shortest frame sizes according to the DVB-RCS
standards whereas the other frame sizes are all above 200. The
code rates for which DTNET is tested are -

?
, .
@
, -
.
, ?
>
 and <

=
.

Code-rates -
?
	and .

@
 are the low code-rates whereas code-rates

?
>
 and <

=
 are the high code-rates.

3.3 Design Choices
The RNN used for binary Turbo decoding comprises of 2 bi-
LSTM layers with 200 hidden units each while 250 hiddent
units are used with the 2 bi-LSTM layers for duo-binary
Turbo decoding. Binary Tirbo decoding is performed on short
sequences with less complex interleaving patterns. This can
be effectively captured with 200 hidden units per layer. In
contrast, duo-binary Turbo decoding involves the processing

of longer sequences and higher code-rates, thereby requiring
an increase in the number of hidden units per layer. The 50
additional hidden units enhance the network’s ability to
model intricate dependencies and iterative decoding
processes for duo-binary Turbo codes. This increase in
computational complexity is balanced with the decoding
performance [23, 24, 25]. The parameter selection aligns with
prior works demonstrating the efficacy of bi-LSTM
architectures in sequential data tasks while ensuring
computational feasibility in resource-constrained
environments [25].
 The choice of the number of training epochs and learning
rate for RNN-based turbo decoding is critical to balancing
convergence speed, generalization, and computational
efficiency. In this work, the number of training epochs was
determined through empirical evaluation to ensure that the
model adequately learns the decoding task without
overfitting, while the learning rate was selected using grid
search to achieve stable and consistent optimization.
Specifically, a learning rate of 10−3 provided a good trade-off
between convergence speed and avoiding gradient explosion
or vanishing issues commonly encountered in training RNNs
[26]. Training for 100 epochs was sufficient to achieve
convergence, as indicated by the stabilization of the loss
function and minimal improvement in bit error rate (BER)
performance beyond this point. This configuration ensures
that the model can effectively decode in low signal-to-noise
ratio (SNR) conditions without significant degradation in
higher SNR regimes. Moreover, the ability of the trained
model to adapt to dynamic channel conditions, such as fading
or interference, was validated through extensive simulations.
These settings are particularly advantageous in real-world
communication systems, such as 5G networks and IoT
applications, where channel conditions can vary rapidly, and
computational resources are constrained [4, 27]. By
optimizing the training parameters, the proposed RNN-based
decoder demonstrates robustness and efficiency, ensuring
practical utility in dynamic environments.

4. Results and Discussions

The performance of the three networks, TNET, TNETQPSK
and DTNET are evaluated and presented. For each NN, the

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 14

training and validation accuracies are first depicted. The
model is then tested against the MAX-LOG-MAP algorithm
to compare its BER performance. Finally, the generalization
capability is shown through the simulation for different block
sizes and code rates.

4.1 Training and validation accuracy of TNET
The training and validation accuracy indicates how well
TNET has been able to model the dataset provided to it. For a
block size of 40, there exist 240 unique training examples. As
such, the data provided to TNET during training comprises
only 0.0000982% of the whole dataset. Fig. 6 shows the
training and validation accuracy for TNET.

Fig. 6. Training and validation accuracy for TNET

 The black dots represent the validation accuracy and the
iterations are in units of 104. It can be observed from Fig. 6
that the training and validation accuracies are very close and
little to no overfitting has occurred. It can be deduced that
TNET has modelled the training dataset very well. As a
training error occurred, the checkpoint network at 10 epochs
was trained for 30 more epochs. After the 30 epochs, the
training and validation accuracies were 93.04% and 92.85%
respectively. As the accuracy and loss of TNET fluctuate a
lot, it is possible to obtain a network with higher accuracy.
Through the use of checkpoints in the training process, a
network having a training and a validation accuracy of
94.11% and 93.92% respectively was obtained.

4.2 BER Performance of TNET versus MAX-LOG-MAP
algorithm
Fig. 7 illustrates that TNET has a worse BER for !!

"#
 values

greater than 0 dB. As compared to the turbo decoder, the BER
decreases slowly for TNET with increasing !!

"#
. It is possible

to improve the performance of TNET through longer training
with a larger training dataset.
 From Fig. 7, it may be observed that TNET only performs
well for other high code rates in the region of !!

""
 less than 2

dB. The code rate ½ is used as a benchmark for analysis.
TNET performs well only for code-rate ;

-=
 as the maximum !!

""

gain for code-rate -
.
 is 0.34 dB over the former code-rate. This

may be because code-rate ;
-=

 is numerically very close to the

code-rate trained on `-
.
a. Fig. 7 also shows the same pattern

of worsening BER performance as the rate decreases or is
further from code-rate -

.
. As such, TNET only adapts to code-

rate ;
-=
.

Fig. 7. BER performance of TNET versus Turbo decoder using MAX-
LOG-MAP algorithm (12 iterations)

4.3 Code-Rate Adaptability for TNET
The code-rate adaptability is tested by decoding turbo codes
of different code rates. The code rates are divided into high
and low code rates. Fig. 8 and Fig. 9 show the BER
performances of high and low code rates respectively.

Fig. 8. Performance of TNET for high code-rates

Fig. 9. Performance of TNET for low code-rates

4.4 Generalization to different block sizes for TNET
The generalisation is broken down into two categories; short
block sizes close to the block size trained on and long block
sizes further away from the block size trained on. The BER
performance of TNET on each type of block size is shown in

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 15

Fig. 10 and Fig. 11. The code rate is kept at -
.
 for the

performance on the different block sizes.

Fig. 10. Performance of TNET on short block sizes

Fig. 11. Performance of TNET on long block sizes

 Figures 10 and 11 show very strong generalizations for
every block size tested. For !!

""
 values from -2 to 3 dB, the

BER performances for all block sizes are the same. For !!
""

value greater than 3 dB, the BER performance improves for
other tested block sizes. TNET’s !!

""
 gain observed at a BER

of 2 × 102. for each simulated block size over the
performance of TNET with block size 40 used is given in
Table 6. It may be deduced that the BER performance
improves with increasing block size.

Table 6. Gain of tested block sizes concerning block size 40
performance

Block size 48 56 64 96 200 400
Gain at BER 2 ×
10$% over block
size 40
performance (dB)

0.372 0.583 0.677 0.95 1.12 1.21

4.5 Training and validation accuracy of TNETQPSK
Fig. 12 shows the training and validation accuracy of
TNETQPSK. After training for 40 epochs, the training and
validation accuracy reached 84.89% and 84.63%
respectively. Due to little variation and the network having
good accuracy at the final point, the network was used for
further analysis. Both the training and validation accuracy of
TNETQPSK are lower than those of TNET suggesting that
the modulation scheme also has an impact on the model’s
accuracy.

Fig. 12. Training and validation accuracy of TNETQPSK

4.6 BER Performance of TNETQPSK versus MAX-LOG-
MAP algorithm
Fig. 13 shows the BER performance of TNETQPSK against
the turbo decoder using MAX-LOG-MAP algorithms with 12
iterations. TNETQPSK is found to have similar
characteristics as TNET. It outperforms the turbo decoder at
!!
""

 values lower than 0 dB but the BER does not decrease as
rapidly as observed with the turbo decoder. The lower
accuracy of the training process is reflected in the BER
performance of TNETQPSK. It can also be observed that
TNET provides a 1 dB gain in !!

""
 over TNETQPSK at a BER

of 10-2.

Fig. 13. Performance of TNETQPSK versus Turbo decoder using MAX-
LOG-MAP (12 iterations)

4.7 Code-Rate Adaptability for TNETQPSK
Fig. 14 and 15 show the performances of TNETQPSK on low
and high code-rates respectively. From Fig. 14, it can be
observed that TNETQPSK’s BER performance improves
with increasing code rate. TNETQPSK’s !!

""
 gain for other

code-rates at a BER of 10-1 over code-rate -
.
 is tabulated in

Table 7, which indicates that the !!
""

 gain increases for code-
rates higher than the one trained on. TNETQPSK also
displays a good performance for code-rate 8/17 with an !!

""

degradation of only 0.28 dB when compared to code-rate ½.
TNETQPSK can thus generalize code rates above	8/17.

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 16

Fig. 14. Performance of TNETQPSK for low code-rates

Fig. 15. Performance of TNETQPSK for high code-rates

Table 7. TNETQPSK gain of other code-rates over code-rate
½ performance

Code-rate 8/17 8/15 8/14 8/13 8/12
Gain at BER 10-1
concerning code-rate 1/2
performance (dB)

-
0.28 0.07 0.405 0.615 0.955

4.8 Generalization to different block sizes for TNETQPSK
Fig. 16 and 17 show the performance of TNETQPSK on short
and long block sizes respectively.

Fig. 16. Performance of TNETQPSK on short block sizes

Fig. 17. Performance of TNETQPSK for long block sizes

 Fig. 16 indicates little deviation from the BER
performance from a block size of 40 for other block sizes.
However, the BER performance does not improve with
increasing block size as depicted by Fig. for TNET. It is more
evident from Fig. 17 that the BER performance degrades
slightly with increasing block size. It is observed that the
maximum !!

""
 gain for block size 40 concerning block size 400

is 0.4 dB. As such, it is possible to say that TNETQPSK can
generalize fairly to all block sizes tested owing to very slight
degradation.

4.9 Training and validation accuracy of DTNET
As the training and validation accuracy fluctuation is very
little, the network was taken for further analysis after 4
epochs. Fig. 18 shows the training and validation accuracy for
DTNET. DTNET achieves a training accuracy and validation
accuracy of 72.46% and 72.76% respectively. This can be
explained by the greater sample space of duo-binary turbo
codes composed of 296 unique code words for the frame size
of 48 bits. As such, using only 1.08 million training examples
covers a tiny portion of the sample space.

Fig. 18. Training and validation accuracy of DTNET.

4.10 BER Performance of DTNET versus MAX-LOG-
MAP algorithm
Fig. 19 shows the BER performance of DTNET against the
conventional duo-binary decoder running 12 iterations of the
MAX-LOG-MAP algorithm. As was observed for TNET and
TNETQPSK, DTNET also shows enhanced BER
performance at !!

""
 values lower than -0.5 dB but the BER does

not drop as fast as the duo-binary turbo decoder. This is due
to the low accuracy reached during training which suggests

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 17

that more data and/or layers of abstraction might be needed
for overall BER performance improvement.

Fig. 19. Performance of DTNET versus MAX-LOG-MAP (12 iterations)

4.11 Code-Rate Adaptability for TNETQPSK
Fig. 20 shows the BER performance of DTNET for varying
code rates. Table 8 shows the gain of other code-rates over
code-rate ½ performance.

Fig. 20. Performance of DTNET for varying code-rates

Table 8. DTNET gain of other code-rates over code-rate ½
performance

Code-rate 1/3 2/5 3/4 6/7
Gain at BER 10-1
concerning code-rate 1/2
performance (dB)

-1.75 -1.00 1.75 2.33

 As observed from Fig. 8, DTNET follows the same
pattern as TNETQPSK whereby increasing the code rate
above the code rate trained on ameliorates the BER
performance. As TNET is the only NN that does not
generalize well with different code rates, it may be deduced
that the modulation scheme used impacts the rate adaptability,
as it is common for both DTNET and TNETQPSK
simulations.

4.12 Generalization to different block sizes for DTNET
Fig. 21 shows the BER performance of DTNET for varying
frame sizes.
 As seen in Fig. 21 the BER curves for different frame sizes
are closely packed suggesting strong generalization to
varying and long frame sizes. As generalization is present, the
BER performance of DTNET for various frame sizes can be
improved through more data and/or layers. TNET,

TNETQPSK and DTNET show good generalization to the
block sizes (and frame sizes) tested. This indicates that 2 bi-
LSTM layers with at least 200 hidden units each are enough
for block size (or frame size) generalization.

Fig. 21. Performance of DTNET for varying frame sizes

4.13 Comparative Analysis
As an alternative to traditional Turbo decoding techniques,
several other systems, apart from RNNS, have been devised
in this area. Some of the alternative systems are autoencoders
and advanced machine learning-based methods such as graph
neural networks (GNNs) and transformer models.
Autoencoders perform well when it comes to learning end-to-
end representations of communication systems. In
comparison RNNs have the ability to provide finer-grained
sequence-level modelling which make them a better fit for
iterative decoding tasks. Advanced machine learning-based
methods, such as graph neural networks (GNNs) and
transformer models offer high capacity for parallelisation and
complex dependency modelling. However, RNNs have lower
computational overhead which make them more suitable in
resource-constrained environments. Several studies have
demonstrated that optimised RNN-based decoders can
achieve comparable or superior decoding performance to
these techniques. Moreover, the bi-directional capabilities of
bi-LSTM layers in RNN-based decoders enable improved
decoding accuracy.

4.14 Trade-offs
The training of RNNs is a resource intensive procedure when
considering communication environments with constraints on
hardware capabilities. The main cause for the computational
cost is due to Backpropagation Through Time (BPTT)
involving the computation of gradients for each layer and time
step for the whole network. This impacts the demand for
processing power and memory when handling long
sequences. In addition, RNNs require the storage of
intermediate states, gradients and model parameters
impacting the memory usage, thereby overloading systems
with restricted RAM or storage. Techniques like optimised
RNN architectures (e.g. LSTMs and GRUs), quantization and
checkpointing can be employed to balance performance and
resource consumption. Using specialised hardware
accelerators such as GPUs and TPUs have demonstrated to
significantly reduce training times and computational costs
[28]. Despite these advancements, there is still a strong need
for research in the area of real-time communications in
resource constrained-environments.

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 18

4.15 Practical Implications
RNN-based decoding methods are promising for modern
communication systems such as 5G and satellite
communications. The main purpose of RNNs is to enhance
error correction in ultra reliable low-latency communications
(URLLC) and massive machine type communications
(mMTC) for efficient and accurate decoding. Turbo codes are
required in high speed and high-reliability channels. RNNs fit
this purpose together with the ability of modelling complex
sequential patterns. Similarly, the robustness of RNN-based
decoders can counter the challenges in noisy and high latency
environment leading to reliable communications over long
distances. The deployment of these techniques has to face a
number of challenges in real-world scenarios. The limited
resources of edge devices and embedded systems (FPGA or
ASIC implementations) can be overwhelmed by the high
memory and computational requirements of RNNs.
Additionally, meticulous optimisations are required with
existing hardware accelerators and the integration of RNNs
for ensuring real-time performance under varying channel
conditions. Further research is required in hardware-software
co-design, model compression techniques and advancements
in lightweight RNN architectures for addressing these
challenges and paving the way for scalable and efficient AI-
driven decoding solutions [29, 30]. Additionally, hybrid
solutions combining RNNs with traditional algorithms could
offer a pathway to balance performance and efficiency,
paving the way for real-time deployment of RNN-based turbo
decoders in next-generation communication systems.

4.16 Limitations
Even though RNN-based turbo decoding mechanisms have
shown significant advancements, they still have certain
limitations. One important challenge is their performance
under the high SNR conditions. In these cases, traditional
decoding algorithms are observed to perform best due to their
deterministic optimisation strategies [31, 32]. The data-driven
characteristic of RNN decoders make them struggle to
generalise in noisy or biased training data case scenarios
leading to suboptimal performance. Moreover, the training of
RNN models have high computational complexities when
considering long code lengths or high-dimensional inputs.
This can be restrictive due to the requirement of extensive
computational resources as compared to advanced
deterministic decoders like LDPC-specific decoding
algorithms [33]. The inherent sequential characteristic of
RNNs aids in the decoding of temporal dependencies.
However, it can result in higher latency compared to
paralellised decoding approaches such as Polar code decoders
leveraging successive cancellation list (SCL) algorithms [34].
Thus it can be inferred from these limitations that there is a
need for hybrid approaches combining the strengths of RNNs
with traditional decoders or even devise novel neural network
architectures for robustness and improved efficiency.

4.17 Error Analysis
RNNs have the tendency to deviate from optimal performance
when atypical conditions of noise patterns or channels which
deviate significantly from the training distribution are
encountered. Burst errors which are low probability events
but common in practical scenarios of fading channels or
interference-dominated environments can cause RNNs to
struggle. These situations can be gracefully handled by
traditional decoders under certain conditions. At high SNRs,
neural networks fail to resolve subtle decoding ambiguities

that traditional decoders can handle effectively. By
identifying such error patterns, several techniques can be
explored as future work. Mechanisms like adversarial
training, data augmentation or hybrid decoder designs can be
considered for mitigating these error limitations and enhance
the robustness.

4.18 Discussions
The experimental results are organized into distinct segments
to ensure a clear presentation of findings related to RNN-
based turbo decoding. First, the training performance of the
proposed decoder is analyzed by examining the accuracy and
loss metrics over successive epochs, highlighting the
convergence behavior and stability of the training process.
Second, the bit error rate (BER) performance is evaluated
under various signal-to-noise ratio (SNR) conditions and
compared against conventional decoding methods, such as the
Max-Log-MAP algorithm, to demonstrate the superiority of
the RNN-based approach. This segment provides insights into
decoding efficiency and robustness across standard additive
white Gaussian noise (AWGN) channels. Finally,
generalization capabilities are assessed by testing the trained
RNN decoder on non-standard channel models, including
fading and burst-error scenarios, as well as unseen code rates
and block lengths. This comprehensive evaluation
underscores the versatility and adaptability of the proposed
decoder in diverse communication environments, ensuring its
applicability in real-world systems.

v. Conclusion & Future Works

In this work, the aim was to investigate turbo decoding
through RNNs and produce a learned model that can be used
for further predictions irrespective of new code rates and
block lengths. The binary turbo decoder was replaced with an
RNN with 2 bi-LSTM layers having 200 hidden units in each
layer. The RNNs trained for BSPK and QPSK were called
TNET and TNETQPSK respectively. The NN replacing the
duo-binary turbo code was named DTNET and is an RNN
with 2 bi-LSTM having 250 hidden units in each layer. For
the binary turbo code, the simulations were carried out in
MATLAB® using the LTE turbo code. The simulations for
duo-binary turbo code were carried out according to the DVB-
RCS standards and the AWGN channel was considered for all
simulations.
 As per the results obtained, TNET attained an accuracy of
94.11% with very little overfitting as the validation accuracy
was at 93.85%. TNET showed poor performance when
compared to the MAX-LOG-MAP algorithm with 12
iterations. This is most probably due to insufficient training
as computation resources were restricted. However, it could
adapt to code-rate ;

-=
 while being trained on code-rate -

.
.

TNET showed very strong generalisation for longer and
similar block sizes as it was performing well on a block size
of 400 while being trained on a block size of 40.
 After training with the same parameters as TNET,
TNETQPSK only reached an accuracy of 84.89% although
there were no signs of overfitting with the validation accuracy
at 84.63%. The lower accuracy of TNETQPSK led to a poor
performance against the MAX-LOG-MAP algorithm with 12
iterations. However, TNETQPSK was able to generalize to all
the block sizes tested although it did not continually improve
the BER performance with increasing block size. Moreover,

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 19

TNETQPSK is generalised to all code rates above ;
-=

 whereas
TNET is generalised only to code-rate ;

-=
.

 Using the same amount of data as TNET and TNETQPSK
and 250 hidden units, DTNET has a training and validation
accuracy of 72.46% and 72.76% respectively. Although its
BER performance is poor in comparison to the MAX-LOG-
MAP algorithm, DTNET adapts seamlessly to all frame sizes
tested. Additionally, DTNET shows improvement in BER for
code-rates greater than the one trained on.
 An important observation from all the simulations carried
out is the fact that the generalization for all block sizes is
possible when using 2 bi-LSTM layers with at least 200 units
in each layer. It can also be deduced that the modulation
scheme used has an impact on the final accuracy of the model.
Moreover, adaptation for code rates above the one with which
training was performed can be achieved by using QPSK
modulation instead of BPSK modulation. Therefore, it is
possible to achieve a “rate-less” turbo decoder that can
perform decoding on any code rate by training TNETQPSK
or DTNET on the lowest code rate available for the particular
communication system.
 Future works could expand on the training of the RNNs
proposed in this work by having more hidden units and/or
layers. In addition to the block size and code-rate adaptability
of the proposed model, training of the RNN architecture can
be performed with more data to obtain a model with higher
accuracy and comparable BER performance to the MAX-
LOG-MAP algorithm. Another interesting direction of
research would be to replace only a portion of the turbo
decoder to perform the LLR computations by using bi-LSTM
layers.
 Transformers and Graph Neural Networks (GNNs) have
also emerged from advances in deep learning. Current
research has shown that these techniques can become

potential candidates for enhancing turbo decoding while
overcoming the limitations of RNN-based approaches.
Transformers have the ability to capture long-range
dependencies and can process entire input sequences in
parallel. Thus, the latency is significantly reduced in the
decoding tasks as compared to the sequential operations with
RNN [35]. The additional benefit of transformers is the ability
to handle the decoding of long codewords or Turbo codes
with high memory order. GNNs are characterised by their
ability to naturally operate on graph-based data. They can thus
model the graphical structure or the bipartite representation of
parity-check relationships in turbo decoding more efficiently.
This leads to GNN-based decoding systems which can learn
dependencies between codeword bit and parity checks,
thereby improving the bit error rate (BER) performance and
the robustness in various channels [36, 37]. The ability to
capture complex interactions in the data by these methods
allows for better generalisation to fading or correlated noise
channel models. Moreover, hybrid architectures of traditional
decoding algorithms with transformers or GNNs could help
with significant advancements in the Turbo decoding field
with new levels of error performances and adaptability for
next-generation communication systems.

Acknowledgments
The authors would like to thank the University of Mauritius
for the necessary facilities provided for the conduction of this
research work.

This is an Open Access article distributed under the terms of
the Creative Commons Attribution License.

References

[1] C. E. Shannon, "A mathematical theory of communication," Bell

Syst. Tech. J., vol. 27, no. 3, pp. 623–656, Jul. 1948.
[2] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein

and Y. Be'ery, "Deep learning methods for improved decoding of
linear codes," IEEE J. Sel. Topics Signal Process, vol. 12, no. 1, pp.
119-131, Jan. 2018.

[3] J. Kim, W. Lee and T. Moon, "Communication algorithm design for
neural network-based decoding of codes," in IEEE Int. Conf.
Commun. (ICC), Vancouver Convention Center, Vancouver, BC,
Canada, Feb. 2018, pp. 1-8.

[4] T. Gruber, S. Cammerer, J. Hoydis, and S. T. Brink, “On deep
learning-based channel decoding,” in 2017 51st Annual Conf.
Inform. Sci. Sys.s (CISS), Baltimore, MD, USA: IEEE, Mar. 2017,
pp. 1–6. doi: 10.1109/CISS.2017.7926071.

[5] Y. Kim, Y. Jiang, R. B. Rana, S. Kannan, S. Oh and P. Viswanath,
"Communication algorithms via deep learning," arXiv. [Online].
Available: https://arxiv.org/abs/1805.09317. [Accessed: July 2019].

[6] R. Annauth and H. C. S. Rughooputh, "Neural network decoding of
turbo codes," in. Int. Joint Conf. Neural Netw.. Proceed. (Cat.
No.99CH36339), Washington, DC, USA, 1999, pp. 3336-3341

[7] M. Sazli and M. Husnu, "Neural Network Applications to Turbo
Decoding," ProQuest. [Online]. Available:
https://surface.syr.edu/eecs_etd/105. [Accessed: July 2019].

[8] Y. Jiang, H. Kim, H. Asnani, S. Kannan, S. Oh and P. Viswanath,
"Turbo Autoencoder: Deep learning based channel codes for point-
to-point communication channels," arXiv. [Online]. Available:
https://arxiv.org/abs/1911.03038. [Accessed: July 2019].

[9] A. Felix, S. Cammerer, S. Dorner, J. Hoydis and S. T. Brink,
"OFDM-Autoencoder for End-to-End Learning of Communications
Systems," arXiv. [Online]. Available:
https://arxiv.org/abs/1803.05815. [Accessed: July 2019].

[10] R. Sattiraju, A. Weinand and H. D. Schotten, "Performance Analysis
of Deep Learning based on Recurrent Neural Networks for Channel

Coding," in IEEE Int. Conf. Adv. Netw. Telecommunic. Sys. (ANTS),
Indore, India, Sep. 2018, pp. 1-6.

[11] He, Yufeng, Zhang, Jing, Wen, Chao-Kai, Jin and Shi, "TurboNet:
A Model-driven DNN Decoder Based on Max-Log-MAP Algorithm
for Turbo Code," arXiv. [Online]. Available:
https://arxiv.org/abs/1905.10502. [Accessed: July 2019].

[12] C. Berrou, A. Glavieux and P. Thitimajshima, "Near shannon limit
error-correcting coding and decoding: Turbo-codes," in Proc. IEEE
Int. Conf. Communic., Geneva, Sep. 1993, pp. 1064-1070.

[13] 3GPP, "3GPP specification series," Specifications by Series.
[Online]. Available: https://www.3gpp.org/DynaReport/36-
series.htm. [Accessed: 24 April 2020].

[14] M. Synthia and M. S. Ali, "Performance study of turbo code with
inter-leaver design," Int. J. Sci. Eng. Res., vol. 2, no. 7, pp. 1-5, Jul.
2011.

[15] L. Bahl, J. Cocke, F. Jelinek and J. Raviv, "Optimal decoding of
linear codes for minimizing symbol error rate," IEEE Transact.
Inform. The., vol. 20, no. 2, pp. 284-287, Mar. 1974.

[16] S. A. Abrantes, "From BCJR to turbo decoding: MAP algorithms
made easier," Repositório Aberto da Universidade do Porto.
[Online]. Available:
https://paginas.fe.up.pt/~sam/textos/From%20BCJR%20to%20turb
o.pdf. [Accessed: 23 April 2020].

[17] European Telecommunications Standards Institute (ETSI), "Digital
Video Broadcasting (DVB); Interaction channel for satellite
distribution systems," European Standard (Telecommunications
Series). [Online]. Available: Interaction channel for satellite
distribution systems. [Accessed: July 2020].

[18] M. Nielsen, "Neural Networks and Deep Learning," Neural
Networks and Deep Learning. [Online]. Available:
http://neuralnetworksanddeeplearning.com/. [Accessed: April
2020].

Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20

 20

[19] D. Rumelhart, G. Hinton and R. Williams, "Learning representations
by back-propagating errors," Nature, vol. 323, pp. 533–536, Oct.
1986.

[20] R. Grosse, "Lecture 15: Exploding and Vanishing Gradients,"
University of Toronto. [Online]. Available:
http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/
L15%20Exploding%20and%20Vanishing%20Gradients.pdf.
[Accessed: July 2020].

[21] The MathWorks, Inc., "Long Short-Term Memory Networks,"
MATLAB Help Center. [Online]. Available:
https://www.mathworks.com/help/deeplearning/ug/long-short-term-
memory-networks.html. [Accessed: 24 April 2020].

[22] M. Phi, "Illustrated Guide to LSTM’s and GRU’s: A step-by-step
explanation," Towards Data Science. [Online]. Available:
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-
s-a-step-by-step-explanation-44e9eb85bf21. [Accessed: 27 April
2020].

[23] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory,"
Neural Computat., vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

[24] D. Bahdanau, K. Cho and Y. Bengio, "Neural Machine Translation
by Jointly Learning To Align and Translate," arXiv. [Online].
Available: https://arxiv.org/abs/1409.0473.

[25] F. A. Gers, J. Schmidhuber and F. Cummins, "Learning to Forget:
Continual Prediction with LSTM," Neural Computat., vol. 12, no.
10, pp. 2451-2471, Oct. 2000.

[26] X. Glorot and Y. Bengio, "Understanding the difficulty of training
deep feedforward neural networks," in Proceed. Int. Conf. Artif.
Intell. Stat. (AISTATS), 2010, pp. 249-256.

[27] A. Goldsmith, Wireless communications. Cambridge; New York:
Cambridge University Press, 2005.

[28] Y. Bengio, P. Simard and P. Frasconi, "Learning Long-Term
Dependencies with Gradient Descent is Difficult," IEEE Transact.
Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.

[29] M. Shlezinger, Y. C. Eldar and S. Ten Brink, "Deep Learning for
Orthogonal Time Frequency Space (OTFS) Modulation," IEEE
Transact. Wirel. Communic., vol. 19, no. 12, pp. 8040-8054, Aug.
2020.

[30] K. N. Rathi, P. S. Rathi and S. W. Kim, "Neural Network-based
Turbo Decoding for 5G NR: An Overview," IEEE Access, vol. 9, pp.
11267-11279, May 2021.

[31] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier and Xiao-
Yu Hu, "Reduced-complexity decoding of LDPC codes," IEEE
Transact. Communic., vol. 53, no. 8, pp. 1288-1299, Aug. 2005.

[32] B. Hassibi and H. Vikalo, "On the sphere-decoding algorithm I.
expected complexity," IEEE Trans. Sign. Proc.., vol. 53, no. 8, pp.
2806-2818, Aug. 2005.

[33] T. Richardson and R. Urbanke, Modern Coding Theory, 1st ed.
Cambridge University Press, 2008. doi:
10.1017/CBO9780511791338.

[34] I. Tal and A. Vardy, "List decoding of polar codes," IEEE Trans. Inf.
Theory, vol. 61, no. 5, pp. 2213-2226, May 2015.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser and I. Polosukhin, "Attention Is All You Need," in
Proceedings Adv. Neural Inf. Process. Syst. (NeurIPS), Long Beach,
CA, USA, Jun. 2017, pp. 1-15.

[36] Z. Ye, Y. J. Kumar, G. O. Sing, F. Song and J. Wang, "A
Comprehensive Survey of Graph Neural Networks for Knowledge
Graphs," IEEE Access, vol. 10, pp. 75729-75741, Jul. 2022.

[37] V. Ninkovic, O. Kundacina, D. Vukobratovic, C. Häger, and A. G. I.
Amat, “Decoding Quantum LDPC Codes Using Graph Neural
Networks,” in GLOBECOM 2024 - 2024 IEEE Global Communic.
Conf., Cape Town, South Africa: IEEE, Dec. 2024, pp. 3479–3484.
doi: 10.1109/GLOBECOM52923.2024.10901425.

