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Abstract 
 

This work proposes the enhancement of Long-Term Evolution (LTE) binary and Digital Video Broadcasting – Return 
Channel Satellite (DVB-RCS) duo-binary turbo codes by replacing the conventional Max-Log MAP decoder with a Deep 
Learning Neural Network (NN). The binary turbo decoder is replaced with a Recurrent Neural Network (RNN) composed 
of two bi-LSTM (bi-Long-Short Term Memory) layers containing 200 hidden units each. The duo-binary turbo decoder is 
replaced with DTNET which is an RNN with 2 bi-LSTM layers and comprising 250 hidden units each. All NNs designed 
in this work outperform the conventional turbo decoder at !!

""
 values lower than 0 dB. The trade-off for achieving this 

performance is the increased computational complexity during the training phase of the model. The algorithms used with 
Quadrature Phase Shift Keying (QPSK) modulation generalize for code rates above the code rate trained on. The results 
suggest that a “rate-less” and block size-adapting turbo decoder can be achieved by training an RNN with 2 bi-LSTM layers 
comprising at least 200 hidden units on the lowest code rate with data from a QPSK modulated communication system. 
 
Keywords: LTE Turbo codes, Duo-Binary Turbo codes, Recurrent Neural Network, bi-Long Short Term Memory, Max-Log-MAP 
____________________________________________________________________________________________ 

 
1. Introduction 
 
Paramount importance has been accorded to reliable digital 
communication in the modern information age. A key issue in 
the communication field is the design of codes to allow robust 
and efficient decoding in a noisy channel. Channel coding 
was first introduced in 1948 by Claude Shannon in his 
landmark paper [1]. The basic idea behind channel coding is 
the addition of redundant bits that convey information about 
the message bits in the decoding process. According to 
Shannon, it is possible to achieve arbitrarily small 
transmission errors at a maximum bit rate for any channel. 
While it is not possible to operate beyond the Shannon limit 
[1], it is stated that creatively and intelligently designed codes 
can perform very close to the Shannon limit albeit under 
certain restrictions such as block size and the type of channel. 
Some landmark codes that approach the theoretical Shannon 
limit are Turbo codes, Low-Density Parity Check (LDPC) 
codes, and Polar codes. 
 With codes operating very close to the Shannon limit, it is 
wise to push towards their robustness. In the case of Turbo 
codes, the known optimal decoding algorithm is Maximum a-
posteriori (MAP). Due to the computational inefficiency 
involving a huge number of multiplication operations, the 
MAP algorithm is often not implemented. Instead, LOG-
MAP or MAX-LOG-MAP algorithms are implemented 
which are sub-optimal algorithms having cheaper 
computational costs. To achieve a better bit error rate (BER) 
and higher computational efficiency, there have been attempts 
to create a Neural Network (NN) based decoder for Turbo 
codes. For a channel decoding task, the input is the noise-
corrupted sequence and the output is the corresponding 
encoded noiseless sequence. 

 Conventional iterative decoders using the algorithms such 
as MAX-Log-MAP rely on approximations and handcrafted 
metrics while RNN-based approaches have the property of 
learning decoding techniques directly from data. Thus RNN-
based Turbo decoding advances the error correction coding 
field significantly enabling improved performances under 
varying noise conditions and channel impairments. The data-
driven approach is particularly impactful in low signal-to-
noise ratio (SNR) regimes where the decoding adaptability 
and robustness are enhanced. Given that the requirement for 
modern communication systems is low latency without 
significant degradation in error performance as trade-off, 
systems with reduced computational complexity are desired. 
RNN-based decoders have been found to fit these 
requirements, thereby making them highly suitable for 
modern communication systems [2, 3]. Decoding challenges 
exist in non-standard channel models for application in IoT 
and 5G communications. RNN-based decoding have 
demonstrated their ability to address these challenges making 
them a suitable candidate [4]. Thus, this work contributes to 
the state-of-the-art in turbo decoding through the strong 
learning abilities of RNN and providing an efficient and 
scalable potential solution for next generation communication 
systems. 
 This work aims to investigate whether a NN can enhance 
the BER performance of conventional binary and duo-binary 
Turbo codes. Concerning the works conducted in [5], a 
Recurrent Neural Network (RNN) with directionality is 
deemed necessary for good performance. The data needed for 
the training process is generated using the DVB-RCS duo-
binary turbo encoder and the Long-Term Evolution (LTE) 
binary turbo encoder with a modification to the interleaver. 
The conventional turbo decoder is replaced with an RNN 
comprising 2 bi-LSTM (bi-Long-Short Term Memory) layers 
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having at least 200 hidden units each. Owing to no previous 
works on duo-binary turbo decoding by NN architectures, we 
propose an RNN with 2 bi-LSTM layers and 250 hidden units 
in each layer. One of the main objectives of this work is to 
come up with a code-length and code-rate independent 
decoder. The generalization capacity of the RNN is examined 
through the use of different block sizes and code-rates input 
to the RNN for decoding. The computational complexity lies 
in the training of the neural network. However, once the 
model is obtained, there is no need for re-training at different 
code lengths and code rates. 

The paper is organized as follows. Section 2 contains an 
overview and theoretical framework surrounding turbo codes 
and NNs. Previous works relating to the use of NNs in turbo 
decoding are also explored. Section 3 illustrates the 
methodology followed for the software implementation of the 
NNs for turbo decoding. Section 4 presents the analysis and 
discussion of the results obtained with the methodology 
followed. Section 5 sheds light on the major findings of this 
work and suggests some further works. 
 
 
2. Overview 
 
The following sub-sections provide a review of the NN-based 
decoding of turbo codes and the related parameters used in 
previous research. A theoretical framework on the essential 
concepts in turbo codes and NNs is also provided. 
 
2.1 Previous Research on NN-based Turbo Decoding 
To approach the Shannon limit, several channel codes were 
invented. However, these channel codes were the product of 
human ingenuity and only came periodically across the 
century. As such, there was a need to enhance existing state-
of-art error-correction codes which led to several attempts to 
implement channel codes using NNs on various occasions. 
Channel codes have been implemented using feedforward 
NNs as well as RNNs. The authors in [6] implemented a 
feedforward NN using a multilayer perceptron structure. The 
BER generated by the neural decoder was close to the optimal 
MAP decoder with the latter having a 𝐸#/𝑁$ gain of 0.8 dB 
over the neural decoder at a BER of 0.01 for a 37/21 turbo 
code. In [7], the BCJR algorithm was reformulated using 
matrix manipulations to implement a feedforward NN that 
was tested for performance in computer simulations. 
 In [8] and [9], an auto-encoder model was used for turbo 
encoding and decoding. The authors of [8] introduced the 
interleaving process into the neural decoding process. The 
results obtained at low Signal-to-Noise ratio (SNR) ranges, 
show that the introduction of the interleaving process makes 
a significant difference. The performance matches and even 
beats the conventional turbo codes whereas the NN trained, 
without the interleaving included, performs worse than the 
turbo code. However, large block sizes for auto-encoder 
training require very large memory which is not feasible 
without sufficient computing resources. It is also judged that 
the Turbo auto-encoder encounters a lot of difficulty during 
the training at high SNRs thereby hindering its learning 
process. The loss is the main driving force of the NN training 
which pushes the system towards its minimum. Training at 
high SNRs causes fewer bits to be in error resulting in a tiny 
loss that ultimately makes training very difficult. 
 Authors in [5] and [10] use bi-directional gated RNNs to 
perform the decoding process. The NN in [10] shows poor 
generalization over high SNRs after training a block length of 
64 bits with only 3000 training examples and a range of SNR 

from -2 to 2 dB. The authors of [5] train a NN for a block size 
of 100 using 1.2 million examples but using only one training 
SNR which performs much better over the remaining SNRs. 
The system also demonstrates generalization over other 
longer block lengths. 
 With the above-mentioned networks performing the 
‘learning to decode’ task, the authors in [11] approach the 
problem differently to obtain a network that has fewer 
parameters to train by replacing only the iterative decoders 
with suitable subnets. Three iterations by the TurboNet in [11] 
outperform the LOG-MAP and the MAX-LOG-MAP 
algorithms and perform the decoding task in less time and 
with fewer parameters than the BCJR RNN used in [5]. A 
complexity analysis by the author in [11] shows that the RNN 
in [8] has 3.85M trainable parameters as compared to 17.8k 
parameters being trained in [11]. 
 
2.2 Training Hyper-parameters and parameters used in 
other researches 
Some of the training parameters and hyper-parameters used 
in similar research for the use of NNs in decoding tasks are 
given in the following sub-sections. 
 
2.2.1 Training SNR 
In [10], an RNN with 2 layers of bi-directional gated recurrent 
units (bi-GRU) is shown to outperform the conventional turbo 
codes (packet size 64) at low SNR although it lags at higher 
SNR. It proposes training 2 separate turbo decoders for high 
and low SNRs respectively to counter the problem. The 
authors in [8] propose an RNN with a similar structure as [10] 
except with batch normalization that is trained for code-rate 
½ and a block size of 100. For experiments conducted in [8], 
a relationship is derived between the ideal training SNR and 
the code rate unlike [10] which uses a set of SNRs ranging 
from -2 to 2 dB for training. The NN in [5] matches the 
performance of the MAP optimal decoding algorithm. Strong 
generalization is shown in [5] as the NN performs equally 
well on block sizes of 1,000 and 10,000 when trained on a 
block of 100. According to the empirical results derived in 
[5], with a turbo code of code rate 𝑟, the training SNR is given 
in equation (1). 
 
𝑆𝑁𝑅%&'()(𝑑𝐵) = min	{𝑆𝑁𝑅*+,*(𝑑𝐵), 10 log-$(2.& − 1)} (1) 
 
2.2.2 Amount of data required, Mini-batch size and 
optimizer used 
According to authors in [5], the number of training examples 
that are required to approach the performance of turbo codes 
is dependent on the block size used. Additionally, the batch 
size must be optimal: too small of a mini-batch size leads to 
very slow convergence due to the update at each step whereas 
a very large mini-batch size may result in poor generalization 
and memory problems. In [5], the two layers of bi-GRU with 
200 hidden units are trained with 1.2 million examples to 
replicate the turbo code performance with a batch size of 200 
(using ADAM optimizer). The authors in [11] find a mini-
batch size of 500 suitable for the training of a block size 40 
turbo code with ADAM optimizer.  
 
2.2.3 Learning Rate and Number of Epochs 
The learning rate determines the time taken in the training 
process as well as its convergence. In [5], the learning rate 
chosen is of the order of 10-3 and converges well as its 
performance approaches that of turbo codes. The RNN in [11] 
converges with a learning rate of 10-5 in a 2-layered bi-LSTM 
structure. The epoch signifies the number of times the whole 



Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20 

 10 

training dataset is used in the training process. Similar 
research for RNN-based decoding in [5, 10, 11] uses epoch 
numbers of 50, 30, and 10 respectively. 
 
2.2.4 Number of Layers and Hidden Units 
It is indicated in [5] that one-layer structured RNNs and 
single-direction RNNs perform worse than 2-layer RNN 
structures. As such, it is deemed important to have a bi-
directional RNN with at least 2 layers for good performance. 
Two bi-LSTM layers of 800 units were sufficient to have a 
good BER in [11]. Additionally, the author in [10] stipulates 
that less than 200 GRU units in the 2-layered NN leads to 
divergence during training. 
 
2.3 The Turbo Encoding & Decoding Principles 
Turbo codes were invented in 1993 by Claude Berrou [12] 
and were the first practical codes to approach the Shannon 
limit. Turbo codes find applications in mobile 
communication, Universal Mobile Telecommunications 
Systems (UMTS), LTE as well as deep-space satellite 
communications. 
 
2.3.1 Binary Turbo Encoding & Decoding in the LTE 
Standard 
Turbo codes are described as a parallel concatenation of 
Recursive Systematic Convolutional (RSC) codes. The 
details of the Turbo encoder can be obtained from [12][13] 
and [14]. Details of the corresponding decoder can be 
obtained from [12] and [15]. 
 
2.3.2 Max-Log MAP Algorithm 
The Log-Likelihood Ratio in this algorithm is computed as 
follows: 
 
𝐿(𝑢/|𝒚) = 𝑚𝑎𝑥∗1-A𝐴/2-(𝑠) + Γ/(𝑠3, 𝑠)F + 𝐵/(𝑠)] −
𝑚𝑎𝑥∗1$A𝐴/2-(𝑠) + Γ/(𝑠3, 𝑠)F + 𝐵/(𝑠)]																																	(2) 
 
where, 
𝐿(𝑢/|𝒚) represents the log-likelihood ratio for transmitted 
symbol 𝑢/ at time instant 𝑘, given the received symbol 𝒚 
𝐴 represents the forward metric  
𝐵 represents the backward metric 
Γ represents the state transition metric 
𝑠3, 𝑠 represent the previous and current states respectively 
𝑅1 and 𝑅0 denotes the transitions with output bits 1 and 0 
respectively 
 
 Details on the computations of the different metrics can 
be obtained from [16]. 
 
2.3.3 Duo-Binary Turbo Encoding / Decoding 
Duo-binary turbo encoder consists of two duo-binary Circular 
Recursive Systematic Codes (CRSC) in parallel 
concatenation. Details of the duo-binary CRSC encoder used 
in Digital Video Broadcasting – Return Channel Satellite 
(DVB-RCS) can be obtained from [17]. 
 Duo-binary turbo codes can also be iteratively decoded 
using the usual MAP algorithm. However, there are 4 LLRs 
to be computed for Duo-Binary turbo code since the pair (A, 
B) can take on 4 values. Modifying the equation for binary 
codes, the following is obtained for duo-binary turbo codes:  
 
𝐿𝐿𝑅 = 𝐿𝐿𝑅 = ln 45𝑢/ = 𝑖6𝒚7

45𝑢/ = 𝑖6𝒚7      (3) 

where, 

y is the received noisy vector, 
𝑢/ is the message symbol that can take on values 𝑖 equal to 
00, 01, 10 and 11. 
 For duo-binary turbo codes, a state has 4 transitions in the 
trellis because of 4 possible values of (A, B). Although the 
BER of the duo-binary turbo code can be superior to that of 
the classical turbo code, the computational complexities and 
decoding times increase even more with the number of 
iterations. 
 
2.4 Neural Networks 
The concept of NNs is derived from the human brain which 
consists of synapses and neurons. To recognize an object, 
specific neurons are fired in the human brain which has 
millions of neurons with billions of connections between 
them. Artificial neurons make up an Artificial Neural 
Network (ANN) which is commonly called Neural Network 
for simplicity. The perceptron is one such artificial neuron 
that was conceived in the 1950s by F. Rosenblatt. As shown 
in Figure 1, the basic mathematical model around the 
perceptron was that for a given number of inputs, X, the 
perceptron assigned weights, W to the inputs, and all of them 
were added. The output was decided upon a threshold that 
would typically be learned in training by going through a 
great number of examples and epochs whereby an epoch 
represents one pass of the whole dataset into the NN [18]. 

 
Fig. 1. Perceptron model 
 
 As a single unit, the perceptron would not be able to make 
good decisions about complex problems. However, a network 
composed of several layers and a handful number of neurons 
in each layer would be able to make a good decision about a 
complex problem when given enough training. In a multi-
layered structure, the common intuition is that each layer 
performs a feature extraction of increasing abstraction level. 
The multilayer perceptron is commonly referred to as Vanilla 
NN when there is only one hidden layer. Generally, increasing 
the number of hidden layers for a NN helps to better model at 
the cost of more training time [19]. 
 
Long Short-Term Memory (LSTM) 
LSTM networks are commonly used for sequence-to-
sequence learning of long-term dependencies in a sequence. 
LSTM networks have gates that are used to selectively 
remember relevant information. As a lot of gradients are 
multiplied during the backpropagation process, successive 
multiplications of gradients much less than 1 tend to zero 
which gives rise to a vanishing gradient. With very small 
gradients, the error becomes negligible making the NN 
incapable of learning whereas exploding gradients cause a 
very large change in parameters which can potentially lead to 
divergence. The gates incorporated in the LSTM network are 
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forget, input, and output gates which help in selective read, 
write and forget. The forget gate, in particular, helps in 
deterring the vanishing gradient problem [20].  The structure 
of the LSTM block is shown in Figure 2 [21]. 
 

 
Fig. 2. LSTM block 
 
 The core elements of the LSTM block are explained in 
[22]. The cell and hidden states contain information about the 
sequence whereas the gates selectively allow information to 
flow in the block. The difference between the cell state and 
the hidden state is that the cell state (long-term memory) 
stores information over longer time steps than the hidden state 
(working memory). The functions of each gate found in the 
LSTM block are outlined in Table 1.  
 
Table 1. Function of each gate in the LSTM block 

Gate Function 

Input 
gate 

The input gate passes the previous hidden state 
and the current input into a sigmoid function to 
update the cell state to retain relevant 
information. 

Output 
gate 

The output gate determines the hidden state to 
be fed to the next block by combining the 
previous hidden state, the present input and the 
new cell state. 

Forget 
gate 

The forget gate is used to forget information; its 
value ranges from 0 to 1 with the value close to 
0 meaning forgetting the given information and 
1, retaining the information. 

 
 The Long Short-Term Memory (LSTM) is a type of 
recurrent neural network (RNN) designed to overcome the 
vanishing gradient problem by introducing gating 
mechanisms. A step-by-step description of the equations 
governing the LSTM structure is as follows: 
 
Step 1: Forget Gate 
The forget gate determines which information from the 
previous cell state 𝐶*2- should be discarded. It uses a sigmoid 
activation function to generate a value between 0 (forget) and 
1 (retrain). 
 
𝑓* = 𝜎M𝑊8. [ℎ*2-, 𝑥*] + 𝑏8F      (4) 
 
𝑓*: Forget gate vector (shape: n-dimensional) 
𝑥*: Current input vector 
ℎ*2-: Previous hidden state 
𝑊8: Weight matrix for the forget gate 
 𝑏8: Bias term for the forget gate 
𝜎: Sigmoid activation function 
 
Step 2: Input Gate 
The input gate decides what new information to add to the cel 
state. It consists of two parts: 

1. A sigmoid layer (𝑖*) determines which parts of the 
input are relevant. 

2. A tanh layer M𝐶*S F creates candidate cell state 
update 

 
𝑖* = 𝜎(𝑊( . [ℎ*2-, 𝑥*] + 𝑏()      (5) 
 
𝐶*S = 𝑡𝑎𝑛ℎ(𝑊9 . [ℎ*2-, 𝑥*] + 𝑏9)     (6) 
 
𝑖*: Input gate vector 
𝐶*S : Candidate cell state update 
𝑊( ,𝑊9: Weight matrices for input gate and candidate state 
𝑏( , 𝑏9: Bias terms for input gate and candidate state 
𝑡𝑎𝑛ℎ: Hyperbolic tangent activation function 
 
Step 3: Update Cell State 
The new cell state 𝐶* is computed by combining the old cell 
state 𝐶*2- modulated by the forget gate 𝑓*, and the candidate 
state 𝐶*S , modulated by the input gate 𝑖*. 
 
𝐶* = 𝑓* ⊙𝐶*2- + 𝑖*⨀𝐶*S       (7) 
 
𝐶*: Updated cell state 
⊙: Element-wise multiplication 
 
Step 4: Output Gate 
The output gate determines the parts of the cell state 𝐶* that 
will be passed to the hidden state ℎ*. This involves applying 
a sigmoid function (𝑜*) and modulating the cell state with 
tanh (𝐶*). 
 
𝑜* = 𝜎(𝑊:. [ℎ*2-, 𝑥*] + 𝑏:)      (8) 

 
ℎ* = 𝑜* ⊙ 𝑡𝑎𝑛ℎ(𝐶*)      (9) 
 
𝑜*: Output gate vector 
ℎ*: Current hidden state 
𝑊:: Weight matrix for the output gate 
𝑏:: Bias term for the output gate 
 
 
3. System Model 
 
The system for the binary Turbo code implemented with 
Binary Phase Shift Keying (BPSK) and Quadrature Phase 
Shift Keying (QPSK), named TNET and TNETQPSK 
respectively, is shown in Figure 3. The packet size of 40 bits 
and code rate of ½ are used. 

 
Fig. 3. Overview of the system used 
 
 The different stages involved in the neural turbo decoding 
are as follows: 



Dharamveer Russeawon and Yogesh Beeharry/Journal of Engineering Science and Technology Review 18 (2) (2025) 8 - 20 

 12 

 
i. Data processing 

ii. Deep NN design 
iii. Training of the NN 
iv. Testing of the models 
 
 In the data processing stage, 1.2 million packets were 
deemed sufficient for training an RNN with 200 bi-GRU units 
on a block size of 40 (	code − rate = -

.
). The !!

""
(𝑑𝐵) values 

used for training the NN with BPSK and QPSK modulation 

schemes are 3.010 and 0.0 respectively. These values have 
been selected after performing intensive individual 
simulations and analyzing the performance with each !!

""
(𝑑𝐵) 

value. The testing of the models is performed by generating 
new sets of random messages repeating the whole process and 
using the NN decoder. 
 
3.1 Deep NN Design for Binary Turbo Codes 
The layers used for TNET and TNETQPSK are shown in Fig. 
4. 

 
Table 2 shows the activations and learnables in TNET and 
TNETQPSK. A summary of the main parameters and hyper-
parameters considered for the training of TNET and 
TNETQPSK are given in Table 3. 

 
Fig. 4. Layers used for TNET and TNETQPSK. 
 

 
Table 2. Activations and learnables in the TNET and TNETQPSK. 

Layer Activations Input weights Recurrent Weights Bias Learnable 
Sequence input 1×80×1 - - - 0 
Flatten 80 - - - 0 
Bi-LSTM 400 1600×80 1600×200 1600×1 449600 
Dropout 400 - - - 0 
Bi-LSTM 400 1600×400 1600×200 1600×1 961600 
Dropout 400 - - - 00 
Fully connected 2 2×80 - 2×1 802 
SoftMax 2 - - - 0 
Classification - - - - 0 
Total learnable 1412002 

 
Table 3. Summary of training parameters for TNET and 
TNETQPSK 

Parameter Value/Setting 
Block size trained 40 
Code-rate used 1

2 
Number of training examples 1.08 million 
Optimiser ADAM 
Mini-batch size 500 
Learning rate 3×10-3 

Epoch number 100 
L2 regularisation constant 10-4 

 
 The performance of the models was tested using three 
criteria: the validation accuracy during training, the BER 
performance against MAX-LOG-MAP and the generalization 
capability. 10% of the 1.2 million packets generated are used 
for validation purposes. As all data were generated randomly 
with no specific correlations between successive sequences, 
it was deemed appropriate to select the last 10% of the 1.2 
million training examples for validation data. The validation 
frequency is set at 500 to monitor the training progress and 
any divergence. The BER performance is computed after 
decoding and de-multiplexing the noisy sequence. This 
predicted sequence is then compared against the expected 
sequence. 
 The generalization capability of the model can be tested 
by passing different block sizes into NN and examining the 
BER performance.  
 
a. Different code rates other than the rate trained on can also 

be tested to see if the models can adapt to them. The code 

rates at which the generalization is tested are 
;
..
, ;
.$
, ;
-;
, ;
-<
, ;
-=
, ;
->
, ;
-?
, ;
-.

. These code rates are divided 
into smaller code rates: ;

..
, ;
.$
, ;
-;
, ;
-<

 and bigger code rates 
;
-<
, ;
-=
, ;
->
, ;
-?
, ;
-.

. Code-rate ℎ𝑎𝑙𝑓	𝑖𝑠 kept into both BER 
graphs as a point of reference for comparison among all 
code-rates.  

b. Similar to the analysis done for code rate, the models are 
also used to decode different block sizes other than the 
block sizes used for training. Small and large block sizes 
used in the LTE standard are employed in the analysis for 
generalization evaluation for smaller blocks. The smaller 
block sizes tested are 40, 48, 56, and 64 bits whereas the 
bigger block sizes tested are 400, 200 and 96. The block 
size of 40 is also included in the BER graph for a bigger 
block size as a point of reference for ease of comparison. 

 
3.2 Deep NN Design for Duo-Binary Turbo Codes 
The NN trained for duo-binary turbo code is named DTNET. 
Due to the computational constraints imposed by the lengthy 
sequence length of the duo-binary turbo code, it becomes 
increasingly difficult to train the network with voluminous 
data. Since the duo-binary turbo code is composed of 2-bit 
streams with 48-bit size each, 1.2 million packets (inclusive 
of validation data) were thus generated for the training of 
DTNET. The training `!!

""
a was set to 0 dB. 

 As no previous work has been done for duo-binary turbo 
codes in the context of NN decoding, the layers shown in Fig. 
5 were proposed for the training process. The proposed 
network is based on intuition following the one for binary 
Turbo codes. To minimize the complexity of the network and 
shorten the training time, only 2 bi-LSTM layers were used 
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for DTNET. However, the number of hidden units was 
increased to 250 to better model the more complex decoding 

process. The dropout layers and L2 regularisation were used 
to avoid overfitting.  

Table 4 shows the activations and learnables for DTNET. As 
the demultiplexed received vector is fed to DTNET, the 
sequence length is always 288, regardless of the rate although 
the punctured elements are replaced with zeros. 

 
Fig. 5. Layers used for DTNET 
 

Table 4. Activations and learnable for DTNET 
Layer Activations Input weights Recurrent Weights Bias Learnable 
Sequence input 1×288×1 - - - 0 
Flatten 288 - - - 0 
Bi-LSTM 500 2000×288 2000×250 2000×1 1078000 
Dropout 500 - - - 0 
Bi-LSTM 500 2000×500 2000×250 2000×1 1502000 
Dropout 500 - - - 0 
Fully connected 2 2×500 - 2×1 1002 
SoftMax 2 - - - 0 
Classification - - - - 0 
Total Learnable 2581002 

 A summary of the main parameters and hyper-parameters 
considered for the training of DTNET is given in Table 5. Due 
to the huge computational load imposed by training long 
sequence length (288 bits for 48-bit frame size for duo-binary 
turbo code), the epoch number was set to 5. 
 
Table 5. Summary of training parameters 

Parameter Value/Setting 
Frame Size 48 
Code-rate 1

2 
Number of training examples  1.08 million 
Optimiser ADAM 
Mini-batch size 200 
Learning rate 3×10-3 

Epoch number 5 
L2 regularisation 10-4 

 
 The same criteria as with binary Turbo codes are used to 
test the performance of DTNET. The training and validation 
accuracy are first examined. A BER comparison is then done 
with the conventional duo-binary turbo decoding. Its 
adaptability with other code rates and block sizes is evaluated 
through the generation of different BER graphs on different 
code rates and frame sizes. 
 The frame sizes for which DTNET is tested are 48, 64, 
212 and 440 (used in DVB-RCS standards [17]). 48 and 64 
bits are the shortest frame sizes according to the DVB-RCS 
standards whereas the other frame sizes are all above 200. The 
code rates for which DTNET is tested are -

?
, .
@
, -
.
, ?
>
 and <

=
. 

Code-rates -
?
	and .

@
 are the low code-rates whereas code-rates 

?
>
 and <

=
 are the high code-rates. 

 
3.3 Design Choices 
The RNN used for binary Turbo decoding comprises of 2 bi-
LSTM layers with 200 hidden units each while 250 hiddent 
units are used with the 2 bi-LSTM layers for duo-binary 
Turbo decoding. Binary Tirbo decoding is performed on short 
sequences with less complex interleaving patterns. This can 
be effectively captured with 200 hidden units per layer. In 
contrast, duo-binary Turbo decoding involves the processing 

of longer sequences and higher code-rates, thereby requiring 
an increase in the number of hidden units per layer. The 50 
additional hidden units enhance the network’s ability to 
model intricate dependencies and iterative decoding 
processes for duo-binary Turbo codes. This increase in 
computational complexity is balanced with the decoding 
performance [23, 24, 25]. The parameter selection aligns with 
prior works demonstrating the efficacy of bi-LSTM 
architectures in sequential data tasks while ensuring 
computational feasibility in resource-constrained 
environments [25].  
 The choice of the number of training epochs and learning 
rate for RNN-based turbo decoding is critical to balancing 
convergence speed, generalization, and computational 
efficiency. In this work, the number of training epochs was 
determined through empirical evaluation to ensure that the 
model adequately learns the decoding task without 
overfitting, while the learning rate was selected using grid 
search to achieve stable and consistent optimization. 
Specifically, a learning rate of 10−3 provided a good trade-off 
between convergence speed and avoiding gradient explosion 
or vanishing issues commonly encountered in training RNNs 
[26]. Training for 100 epochs was sufficient to achieve 
convergence, as indicated by the stabilization of the loss 
function and minimal improvement in bit error rate (BER) 
performance beyond this point. This configuration ensures 
that the model can effectively decode in low signal-to-noise 
ratio (SNR) conditions without significant degradation in 
higher SNR regimes. Moreover, the ability of the trained 
model to adapt to dynamic channel conditions, such as fading 
or interference, was validated through extensive simulations. 
These settings are particularly advantageous in real-world 
communication systems, such as 5G networks and IoT 
applications, where channel conditions can vary rapidly, and 
computational resources are constrained [4, 27]. By 
optimizing the training parameters, the proposed RNN-based 
decoder demonstrates robustness and efficiency, ensuring 
practical utility in dynamic environments. 
 
4. Results and Discussions 
 
The performance of the three networks, TNET, TNETQPSK 
and DTNET are evaluated and presented. For each NN, the 
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training and validation accuracies are first depicted. The 
model is then tested against the MAX-LOG-MAP algorithm 
to compare its BER performance. Finally, the generalization 
capability is shown through the simulation for different block 
sizes and code rates. 
 
4.1 Training and validation accuracy of TNET 
The training and validation accuracy indicates how well 
TNET has been able to model the dataset provided to it. For a 
block size of 40, there exist 240 unique training examples. As 
such, the data provided to TNET during training comprises 
only 0.0000982% of the whole dataset. Fig. 6 shows the 
training and validation accuracy for TNET. 
 

 
Fig. 6. Training and validation accuracy for TNET 
 
 The black dots represent the validation accuracy and the 
iterations are in units of 104. It can be observed from Fig. 6 
that the training and validation accuracies are very close and 
little to no overfitting has occurred. It can be deduced that 
TNET has modelled the training dataset very well. As a 
training error occurred, the checkpoint network at 10 epochs 
was trained for 30 more epochs. After the 30 epochs, the 
training and validation accuracies were 93.04% and 92.85% 
respectively. As the accuracy and loss of TNET fluctuate a 
lot, it is possible to obtain a network with higher accuracy. 
Through the use of checkpoints in the training process, a 
network having a training and a validation accuracy of 
94.11% and 93.92% respectively was obtained. 
 
4.2 BER Performance of TNET versus MAX-LOG-MAP 
algorithm 
Fig. 7 illustrates that TNET has a worse BER for !!

"#
 values 

greater than 0 dB. As compared to the turbo decoder, the BER 
decreases slowly for TNET with increasing !!

"#
. It is possible 

to improve the performance of TNET through longer training 
with a larger training dataset. 
 From Fig. 7, it may be observed that TNET only performs 
well for other high code rates in the region of !!

""
 less than 2 

dB.  The code rate ½ is used as a benchmark for analysis. 
TNET performs well only for code-rate ;

-=
 as the maximum !!

""
 

gain for code-rate -
.
 is 0.34 dB over the former code-rate. This 

may be because code-rate ;
-=

 is numerically very close to the 

code-rate trained on `-
.
a. Fig. 7 also shows the same pattern 

of worsening BER performance as the rate decreases or is 
further from code-rate -

.
.  As such, TNET only adapts to code-

rate ;
-=
. 

 

 
Fig. 7. BER performance of TNET versus Turbo decoder using MAX-
LOG-MAP algorithm (12 iterations) 
 
4.3 Code-Rate Adaptability for TNET 
The code-rate adaptability is tested by decoding turbo codes 
of different code rates. The code rates are divided into high 
and low code rates. Fig. 8 and Fig. 9 show the BER 
performances of high and low code rates respectively. 
 

 
Fig. 8. Performance of TNET for high code-rates 
 

 
Fig. 9. Performance of TNET for low code-rates 
 
4.4 Generalization to different block sizes for TNET 
The generalisation is broken down into two categories; short 
block sizes close to the block size trained on and long block 
sizes further away from the block size trained on. The BER 
performance of TNET on each type of block size is shown in 
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Fig. 10 and Fig. 11. The code rate is kept at -
.
 for the 

performance on the different block sizes.  

 
Fig. 10. Performance of TNET on short block sizes 

 
Fig. 11. Performance of TNET on long block sizes 
 
 Figures 10 and 11 show very strong generalizations for 
every block size tested. For !!

""
  values from -2 to 3 dB, the 

BER performances for all block sizes are the same. For !!
""

 
value greater than 3 dB, the BER performance improves for 
other tested block sizes. TNET’s !!

""
  gain observed at a BER 

of 2 × 102.  for each simulated block size over the 
performance of TNET with block size 40 used is given in  
Table 6. It may be deduced that the BER performance 
improves with increasing block size. 
 
Table 6. Gain of tested block sizes concerning block size 40 
performance 

Block size 48 56 64 96 200 400 
Gain at BER 2 ×
10$% over block 
size 40 
performance (dB) 

0.372 0.583 0.677 0.95 1.12 1.21 

 
4.5 Training and validation accuracy of TNETQPSK 
Fig. 12 shows the training and validation accuracy of 
TNETQPSK. After training for 40 epochs, the training and 
validation accuracy reached 84.89% and 84.63% 
respectively. Due to little variation and the network having 
good accuracy at the final point, the network was used for 
further analysis. Both the training and validation accuracy of 
TNETQPSK are lower than those of TNET suggesting that 
the modulation scheme also has an impact on the model’s 
accuracy. 

 
Fig. 12. Training and validation accuracy of TNETQPSK 
 
4.6 BER Performance of TNETQPSK versus MAX-LOG-
MAP algorithm 
Fig. 13 shows the BER performance of TNETQPSK against 
the turbo decoder using MAX-LOG-MAP algorithms with 12 
iterations. TNETQPSK is found to have similar 
characteristics as TNET. It outperforms the turbo decoder at  
!!
""

 values lower than 0 dB but the BER does not decrease as 
rapidly as observed with the turbo decoder. The lower 
accuracy of the training process is reflected in the BER 
performance of TNETQPSK. It can also be observed that 
TNET provides a 1 dB gain in !!

""
  over TNETQPSK at a BER 

of 10-2. 

 
Fig. 13. Performance of TNETQPSK versus Turbo decoder using MAX-
LOG-MAP (12 iterations) 
 
4.7  Code-Rate Adaptability for TNETQPSK 
Fig. 14 and 15 show the performances of TNETQPSK on low 
and high code-rates respectively. From Fig. 14, it can be 
observed that TNETQPSK’s BER performance improves 
with increasing code rate. TNETQPSK’s !!

""
  gain for other 

code-rates at a BER of 10-1 over code-rate -
.
 is tabulated in  

Table 7, which indicates that the !!
""

  gain increases for code-
rates higher than the one trained on. TNETQPSK also 
displays a good performance for code-rate 8/17 with an !!

""
  

degradation of only 0.28 dB when compared to code-rate ½. 
TNETQPSK can thus generalize code rates above	8/17. 
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Fig. 14. Performance of TNETQPSK for low code-rates 
 

 
Fig. 15. Performance of TNETQPSK for high code-rates 
 
Table 7. TNETQPSK gain of other code-rates over code-rate 
½ performance 

Code-rate 8/17 8/15 8/14 8/13 8/12 
Gain at BER 10-1 
concerning code-rate 1/2 
performance (dB) 

-
0.28 0.07 0.405 0.615 0.955 

 
4.8 Generalization to different block sizes for TNETQPSK 
Fig. 16 and 17 show the performance of TNETQPSK on short 
and long block sizes respectively. 
 

 
Fig. 16. Performance of TNETQPSK on short block sizes 
 

 
Fig. 17. Performance of TNETQPSK for long block sizes 
 
 Fig. 16 indicates little deviation from the BER 
performance from a block size of 40 for other block sizes. 
However, the BER performance does not improve with 
increasing block size as depicted by Fig.  for TNET. It is more 
evident from Fig. 17 that the BER performance degrades 
slightly with increasing block size. It is observed that the 
maximum !!

""
  gain for block size 40 concerning block size 400 

is 0.4 dB. As such, it is possible to say that TNETQPSK can 
generalize fairly to all block sizes tested owing to very slight 
degradation. 
 
4.9 Training and validation accuracy of DTNET 
As the training and validation accuracy fluctuation is very 
little, the network was taken for further analysis after 4 
epochs. Fig. 18 shows the training and validation accuracy for 
DTNET. DTNET achieves a training accuracy and validation 
accuracy of 72.46% and 72.76% respectively. This can be 
explained by the greater sample space of duo-binary turbo 
codes composed of 296 unique code words for the frame size 
of 48 bits. As such, using only 1.08 million training examples 
covers a tiny portion of the sample space. 
 

 
Fig. 18. Training and validation accuracy of DTNET. 

 
4.10 BER Performance of DTNET versus MAX-LOG-
MAP algorithm 
Fig. 19 shows the BER performance of DTNET against the 
conventional duo-binary decoder running 12 iterations of the 
MAX-LOG-MAP algorithm. As was observed for TNET and 
TNETQPSK, DTNET also shows enhanced BER 
performance at !!

""
 values lower than -0.5 dB but the BER does 

not drop as fast as the duo-binary turbo decoder. This is due 
to the low accuracy reached during training which suggests 
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that more data and/or layers of abstraction might be needed 
for overall BER performance improvement. 
 

 
Fig. 19. Performance of DTNET versus MAX-LOG-MAP (12 iterations) 

 
4.11 Code-Rate Adaptability for TNETQPSK 
Fig. 20 shows the BER performance of DTNET for varying 
code rates. Table 8 shows the gain of other code-rates over 
code-rate ½ performance. 

 
Fig. 20. Performance of DTNET for varying code-rates 
 
Table 8. DTNET gain of other code-rates over code-rate ½ 
performance 

Code-rate 1/3 2/5 3/4 6/7 
Gain at BER 10-1 
concerning code-rate 1/2 
performance (dB) 

-1.75 -1.00 1.75 2.33 

 
 As observed from Fig. 8, DTNET follows the same 
pattern as TNETQPSK whereby increasing the code rate 
above the code rate trained on ameliorates the BER 
performance.  As TNET is the only NN that does not 
generalize well with different code rates, it may be deduced 
that the modulation scheme used impacts the rate adaptability, 
as it is common for both DTNET and TNETQPSK 
simulations. 
 
4.12 Generalization to different block sizes for DTNET 
Fig. 21 shows the BER performance of DTNET for varying 
frame sizes. 
 As seen in Fig. 21 the BER curves for different frame sizes 
are closely packed suggesting strong generalization to 
varying and long frame sizes. As generalization is present, the 
BER performance of DTNET for various frame sizes can be 
improved through more data and/or layers. TNET, 

TNETQPSK and DTNET show good generalization to the 
block sizes (and frame sizes) tested. This indicates that 2 bi-
LSTM layers with at least 200 hidden units each are enough 
for block size (or frame size) generalization. 
 

 
Fig. 21. Performance of DTNET for varying frame sizes 
 
 
4.13 Comparative Analysis 
As an alternative to traditional Turbo decoding techniques, 
several other systems, apart from RNNS, have been devised 
in this area. Some of the alternative systems are autoencoders 
and advanced machine learning-based methods such as graph 
neural networks (GNNs) and transformer models. 
Autoencoders perform well when it comes to learning end-to-
end representations of communication systems. In 
comparison RNNs have the ability to provide finer-grained 
sequence-level modelling which make them a better fit for 
iterative decoding tasks. Advanced machine learning-based 
methods, such as graph neural networks (GNNs) and 
transformer models offer high capacity for parallelisation and 
complex dependency modelling. However, RNNs have lower 
computational overhead which make them more suitable in 
resource-constrained environments. Several studies have 
demonstrated that optimised RNN-based decoders can 
achieve comparable or superior decoding performance to 
these techniques. Moreover, the bi-directional capabilities of 
bi-LSTM layers in RNN-based decoders enable improved 
decoding accuracy. 
 
4.14 Trade-offs 
The training of RNNs is a resource intensive procedure when 
considering communication environments with constraints on 
hardware capabilities. The main cause for the computational 
cost is due to Backpropagation Through Time (BPTT) 
involving the computation of gradients for each layer and time 
step for the whole network. This impacts the demand for 
processing power and memory when handling long 
sequences. In addition, RNNs require the storage of 
intermediate states, gradients and model parameters 
impacting the memory usage, thereby overloading systems 
with restricted RAM or storage. Techniques like optimised 
RNN architectures (e.g. LSTMs and GRUs), quantization and 
checkpointing can be employed to balance performance and 
resource consumption. Using specialised hardware 
accelerators such as GPUs and TPUs have demonstrated to 
significantly reduce training times and computational costs 
[28]. Despite these advancements, there is still a strong need 
for research in the area of real-time communications in 
resource constrained-environments.     
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4.15 Practical Implications 
RNN-based decoding methods are promising for modern 
communication systems such as 5G and satellite 
communications. The main purpose of RNNs is to enhance 
error correction in ultra reliable low-latency communications 
(URLLC) and massive machine type communications 
(mMTC) for efficient and accurate decoding. Turbo codes are 
required in high speed and high-reliability channels. RNNs fit 
this purpose together with the ability of modelling complex 
sequential patterns. Similarly, the robustness of RNN-based 
decoders can counter the challenges in noisy and high latency 
environment leading to reliable communications over long 
distances. The deployment of these techniques has to face a 
number of challenges in real-world scenarios. The limited 
resources of edge devices and embedded systems (FPGA or 
ASIC implementations) can be overwhelmed by the high 
memory and computational requirements of RNNs. 
Additionally, meticulous optimisations are required with 
existing hardware accelerators and the integration of RNNs 
for ensuring real-time performance under varying channel 
conditions. Further research is required in hardware-software 
co-design, model compression techniques and advancements 
in lightweight RNN architectures for addressing these 
challenges and paving the way for scalable and efficient AI-
driven decoding solutions [29, 30]. Additionally, hybrid 
solutions combining RNNs with traditional algorithms could 
offer a pathway to balance performance and efficiency, 
paving the way for real-time deployment of RNN-based turbo 
decoders in next-generation communication systems. 
 
4.16 Limitations 
Even though RNN-based turbo decoding mechanisms have 
shown significant advancements, they still have certain 
limitations. One important challenge is their performance 
under the high SNR conditions. In these cases, traditional 
decoding algorithms are observed to perform best due to their 
deterministic optimisation strategies [31, 32]. The data-driven 
characteristic of RNN decoders make them struggle to 
generalise in noisy or biased training data case scenarios 
leading to suboptimal performance. Moreover, the training of 
RNN models have high computational complexities when 
considering long code lengths or high-dimensional inputs. 
This can be restrictive due to the requirement of extensive 
computational resources as compared to advanced 
deterministic decoders like LDPC-specific decoding 
algorithms [33]. The inherent sequential characteristic of 
RNNs aids in the decoding of temporal dependencies. 
However, it can result in higher latency compared to 
paralellised decoding approaches such as Polar code decoders 
leveraging successive cancellation list (SCL) algorithms [34]. 
Thus it can be inferred from these limitations that there is a 
need for hybrid approaches combining the strengths of RNNs 
with traditional decoders or even devise novel neural network 
architectures for robustness and improved efficiency. 
 
4.17 Error Analysis 
RNNs have the tendency to deviate from optimal performance 
when atypical conditions of noise patterns or channels which 
deviate significantly from the training distribution are 
encountered. Burst errors which are low probability events 
but  common in practical scenarios of fading channels or 
interference-dominated environments can cause RNNs to 
struggle. These situations can be gracefully handled by 
traditional decoders under certain conditions. At high SNRs, 
neural networks fail to resolve subtle decoding ambiguities 

that traditional decoders can handle effectively. By 
identifying such error patterns, several techniques can be 
explored as future work. Mechanisms like adversarial 
training, data augmentation or hybrid decoder designs can be 
considered for mitigating these error limitations and enhance 
the robustness. 
 
4.18 Discussions 
The experimental results are organized into distinct segments 
to ensure a clear presentation of findings related to RNN-
based turbo decoding. First, the training performance of the 
proposed decoder is analyzed by examining the accuracy and 
loss metrics over successive epochs, highlighting the 
convergence behavior and stability of the training process. 
Second, the bit error rate (BER) performance is evaluated 
under various signal-to-noise ratio (SNR) conditions and 
compared against conventional decoding methods, such as the 
Max-Log-MAP algorithm, to demonstrate the superiority of 
the RNN-based approach. This segment provides insights into 
decoding efficiency and robustness across standard additive 
white Gaussian noise (AWGN) channels. Finally, 
generalization capabilities are assessed by testing the trained 
RNN decoder on non-standard channel models, including 
fading and burst-error scenarios, as well as unseen code rates 
and block lengths. This comprehensive evaluation 
underscores the versatility and adaptability of the proposed 
decoder in diverse communication environments, ensuring its 
applicability in real-world systems. 
 
 

v. Conclusion & Future Works 
 
In this work, the aim was to investigate turbo decoding 
through RNNs and produce a learned model that can be used 
for further predictions irrespective of new code rates and 
block lengths. The binary turbo decoder was replaced with an 
RNN with 2 bi-LSTM layers having 200 hidden units in each 
layer. The RNNs trained for BSPK and QPSK were called 
TNET and TNETQPSK respectively. The NN replacing the 
duo-binary turbo code was named DTNET and is an RNN 
with 2 bi-LSTM having 250 hidden units in each layer. For 
the binary turbo code, the simulations were carried out in 
MATLAB® using the LTE turbo code. The simulations for 
duo-binary turbo code were carried out according to the DVB-
RCS standards and the AWGN channel was considered for all 
simulations.  
 As per the results obtained, TNET attained an accuracy of 
94.11% with very little overfitting as the validation accuracy 
was at 93.85%. TNET showed poor performance when 
compared to the MAX-LOG-MAP algorithm with 12 
iterations. This is most probably due to insufficient training 
as computation resources were restricted. However, it could 
adapt to code-rate ;

-=
  while being trained on code-rate -

.
. 

TNET showed very strong generalisation for longer and 
similar block sizes as it was performing well on a block size 
of 400 while being trained on a block size of 40.  
 After training with the same parameters as TNET, 
TNETQPSK only reached an accuracy of 84.89% although 
there were no signs of overfitting with the validation accuracy 
at 84.63%. The lower accuracy of TNETQPSK led to a poor 
performance against the MAX-LOG-MAP algorithm with 12 
iterations. However, TNETQPSK was able to generalize to all 
the block sizes tested although it did not continually improve 
the BER performance with increasing block size. Moreover, 
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TNETQPSK is generalised to all code rates above ;
-=

 whereas 
TNET is generalised only to code-rate ;

-=
. 

 Using the same amount of data as TNET and TNETQPSK 
and 250 hidden units, DTNET has a training and validation 
accuracy of 72.46% and 72.76% respectively. Although its 
BER performance is poor in comparison to the MAX-LOG-
MAP algorithm, DTNET adapts seamlessly to all frame sizes 
tested. Additionally, DTNET shows improvement in BER for 
code-rates greater than the one trained on. 
 An important observation from all the simulations carried 
out is the fact that the generalization for all block sizes is 
possible when using 2 bi-LSTM layers with at least 200 units 
in each layer. It can also be deduced that the modulation 
scheme used has an impact on the final accuracy of the model. 
Moreover, adaptation for code rates above the one with which 
training was performed can be achieved by using QPSK 
modulation instead of BPSK modulation. Therefore, it is 
possible to achieve a “rate-less” turbo decoder that can 
perform decoding on any code rate by training TNETQPSK 
or DTNET on the lowest code rate available for the particular 
communication system. 
 Future works could expand on the training of the RNNs 
proposed in this work by having more hidden units and/or 
layers. In addition to the block size and code-rate adaptability 
of the proposed model, training of the RNN architecture can 
be performed with more data to obtain a model with higher 
accuracy and comparable BER performance to the MAX-
LOG-MAP algorithm. Another interesting direction of 
research would be to replace only a portion of the turbo 
decoder to perform the LLR computations by using bi-LSTM 
layers. 
 Transformers and Graph Neural Networks (GNNs)  have 
also emerged from advances in deep learning. Current 
research has shown that these techniques can become 

potential candidates for enhancing turbo decoding while 
overcoming the limitations of RNN-based approaches. 
Transformers have the ability to capture long-range 
dependencies and can process entire input sequences in 
parallel. Thus, the latency is significantly reduced in the 
decoding tasks as compared to the sequential operations with 
RNN [35]. The additional benefit of transformers is the ability 
to handle the decoding of long codewords or Turbo codes 
with high memory order. GNNs are characterised by their 
ability to naturally operate on graph-based data. They can thus 
model the graphical structure or the bipartite representation of 
parity-check relationships in turbo decoding more efficiently. 
This leads to GNN-based decoding systems which can learn 
dependencies between codeword bit and parity checks, 
thereby improving the bit error rate (BER) performance and 
the robustness in various channels [36, 37]. The ability to 
capture complex interactions in the data by these methods 
allows for better generalisation to fading or correlated noise 
channel models. Moreover, hybrid architectures of traditional 
decoding algorithms with transformers or GNNs could help 
with significant advancements in the Turbo decoding field 
with new levels of error performances and adaptability for 
next-generation communication systems. 
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