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Abstract 
  

Hand gesture recognition (HGR) is a crucial aspect of human-computer interaction, enabling intuitive and efficient 
control in various applications, including assistive technology, robotics, and virtual reality. Surface electromyogram 
(sEMG) signals have been widely used for gesture recognition due to their ability to capture muscle activity, providing a 
reliable basis for identifying different hand movements. Despite significant advancements, existing hand gesture 
recognition systems still face challenges in achieving high accuracy and robustness, particularly in distinguishing 
complex hand movements. Traditional features extracted from sEMG signals may not fully capture the dynamic and 
cumulative nature of muscle activity, limiting their effectiveness in real-world applications. There is a need to explore 
novel feature extraction methods that enhance recognition performance. This study introduces three novel derivative and 
summative features—Derivative Simple Square Integral (DSSI), Threshold Slope Sign Change (TSSC), and Absolute 
Value of Summation of the Temporal Moments (AVTM)—to improve hand gesture recognition accuracy. The proposed 
features aim to better encode both the instantaneous and cumulative dynamics of hand movements, leading to more 
accurate gesture classification. To evaluate their effectiveness, the performance of Extreme Gradient Boost (XGBoost), 
Logistic Regression, and Support Vector Machine (SVM) classifiers is analyzed using both existing and proposed 
features. The experimental results demonstrate that incorporating the proposed features with existing feature sets 
significantly enhances classification accuracy. The best performance is achieved using the TSSC feature with the SVM 
classifier, reaching an accuracy of 90.76%, which marks an improvement of approximately 4.98% over traditional 
feature-based methods. These findings validate the potential of the proposed features in developing more advanced and 
efficient hand gesture-based interfaces. 
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1. Introduction 
 
Human hand gesture recognition (HGR) systems have gained 
popularity due to their multifunctional role in human-
computer interaction. The primary reason for this growing 
interest is their advantages, such as flexibility, ease of use, 
convenience, and the ability to control machines through 
gestures [1, 2]. The development of systems that enable 
command execution via gesture recognition represents a 
significant technological advancement, offering an alternative 
to traditional input methods such as joysticks, buttons, or 
touchscreens. HGR systems are widely applied across various 
domains, including chatbot-based communication, natural 
language processing, prosthetics, internet navigation, virtual 
and augmented reality, human-robot interaction, assistive 
vehicle command and guidance, medical automation, and 
video game control. However, developing HGR systems 
capable of accurately and swiftly recognizing specific 
gestures remains a significant challenge. This difficulty arises 
because each user performs gestures slightly differently, 
leading to variations in the collected data. As a result, even 
when individuals execute the same gesture, the recorded 
signals may differ. Furthermore, there is a possibility that 
measurements from different hand movements may appear 
similar, potentially leading to misinterpretations of the user's 

intentions [3, 4]. In the literature, vision-based HGR systems 
commonly utilize different cameras (RGB, infrared, thermal, 
stereo, depth) along with various sensors and Leap Motion 
signal structures. These systems analyze body gestures using 
multiple sensors. However, challenges such as occlusion, 
hand-sensor distance, ambient noise, and lighting conditions 
can adversely affect their performance. Consequently, for 
many HGR applications, sensor-based approaches, including 
EMG (electromyography), ultrasonic, or IMU-based 
methods, are often preferred [5,6]. EMG signals are 
particularly effective for recognizing static hand gestures, 
focusing on finger and hand joint movements. Meanwhile, 
Inertial Measurement Unit (IMU) and Visual-Inertial (VI) 
signals have proven highly beneficial for identifying dynamic 
gestures, especially those involving arm movement. EMG 
signals effectively capture muscle activation, making them a 
preferred choice for HGR applications. The popularity of 
EMG-based solutions has led to the development of 
commercial devices like the G-force and Myo wristbands. 
EMG data can be recorded through invasive or non-invasive 
methods. While invasive techniques require direct skin 
penetration to reach muscles, surface electromyography 
(sEMG) provides a non-invasive alternative by measuring 
muscular action potential through the outermost layer of the 
skin [7,8]. 
 Pattern recognition using machine learning (ML) 
techniques is a widely adopted approach for gesture 
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recognition leveraging sEMG. A typical machine learning 
pipeline includes feature extraction, data acquisition, model 
development, and interpretation. sEMG signals are collected 
by placing electrodes around the targeted muscle region. 
Experts typically extract hand-crafted features that capture 
temporal and frequency aspects of the data. Commonly used 
features include Root Mean Square (RMS), Variance, Mean 
Absolute Value (MAV), Zero Crossings (ZC), Slope Sign 
Variations (SSV), waveform length, and histogram features. 
These extracted features are then fed into various 
classification models, such as Random Forest (RF), Support 
Vector Clustering (SVC), k-Nearest Neighbors (kNN), and 
Logistic Regression (LR), with optimized parameters for 
improved classification accuracy. Support Vector Clustering 
(SVC) is a supervised ML technique that utilizes kernel-
based learning [9,10]. It combines regression and 
classification methods for pattern analysis. The primary 
objective of SVC is to separate a dataset into two classes by 
identifying a hyperplane, which serves as a binary classifier. 
The data points closest to the hyperplane, known as support 
vectors, play a crucial role in determining its shape, form, and 
position in an n-dimensional space, where n represents the 
number of features. The hinge loss function, similar to that of 
logistic regression, is used to optimize the margin between 
the hyperplane and data points. The kNN algorithm classifies 
gestures based on the labels of their nearest neighbors. 
Euclidean distance is typically used to identify the closest 
neighbors, with classification accuracy improving as the k 
value (the number of considered neighbors) increases 
[11,12]. The Euclidean distance formula computes the 
distances between data points, aiming to minimize them. In 
kNN, classification is determined by averaging the labels of 
the k closest data points. The algorithm's performance is 
influenced by factors such as the threshold value, similarity 
measurement, and distance to the nearest neighbors. 
 Logistic regression aims to Logistic regression aims to 
utilize regression tools to illustrate the relationship between 
informative factors and a defined response variable. Unlike 
standard linear regression, where the response variable Y is 
continuous, logistic regression deals with a discrete response 
variable. This distinction is evident in how logistic 
regression selects thresholds and probabilities, showcasing 
its predictive nature. Logistic regression employs a linear 
equation to predict values between 0 and 1, operating based 
on probability. It converts these probabilities into categorical 
values using the sigmoid activation function, also known as 
the logistic function. A random forest classifier utilizes an 
ensemble of decision trees to label sample data. Multiple 
decision trees are employed to enhance the algorithm’s 
performance, with each tree designed to optimize prediction 
accuracy [13,14]. Random forest methods are preferred over 
other techniques due to several advantages, including their 
robust performance on large datasets, ability to prevent 
overfitting, capability to handle both numerical and 
categorical variables, and ease of use in multi-class 
environments, all while requiring minimal parameter tuning. 
The advent of deep learning (DL), a revolutionary approach 
in machine learning, has marked a new era in data analytics. 
Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs) are two prominent deep learning 
models that have demonstrated significant success in speech 
recognition and image classification, respectively. Unlike 
conventional machine learning methods that rely on 
manually engineered features, deep learning models extract 
and learn features automatically. Although these methods 
are not entirely new, their rapid advancement can be 

attributed to the availability of big data and substantial 
improvements in computational power [15,16], enabling the 
efficient execution of these resource-intensive models. The 
structure of the article is as follows: Section 2 explores the 
related research work. Section 3 describes the materials and 
methods. Existing time, frequency and time-frequency 
domain features have been discussed in Section 4 and our 
proposed research methodology is explained in Section 5. 
Section 6 comprises the results and discussion; finally, the 
conclusion and future scope are given in Section 7. 
 The following are the main contributions of the proposed 
work: 
 
1. Introduced derivative and summative features to encode 
both instantaneous and cumulative dynamics of hand 
gestures, enhancing gesture classification. 
2. Proposed three new features — Derivative Simple Square 
Integral (DSSI), Threshold Slope Sign Change (TSSC), and 
Absolute Value of Summation of Temporal Moments 
(AVTM)— to augment the existing features. 
3. Applied machine learning algorithms, including Extreme 
Gradient Boost (XGBoost), Logistic Regression, and 
Support Vector Machine (SVM), to evaluate the 
effectiveness of the proposed features. 
4. Facilitated the development of more advanced and 
efficient hand gesture-based interfaces through the 
incorporation of novel features, improving recognition 
performance. 
 
 
2. Literature Review 
 
Recently, hand gesture recognition has become a focal point 
in Human-Computer Interaction (HCI) due to its 
applications in sign language interpretation, virtual reality, 
robotics, and more. Interpreting hand movements as 
meaningful commands or actions is crucial for developing 
intuitive and effective interfaces. Traditionally, gesture 
recognition relied on image processing techniques, but with 
the advent of machine learning, a shift toward more 
advanced and efficient models has taken place. In recent 
years, various machine learning models, such as 
Convolutional Neural Networks (CNNs), Support Vector 
Machines (SVMs), and deep learning architectures, have 
been employed for gesture recognition. These models first 
process visual information from cameras or other sensors 
and then classify hand gestures with varying degrees of 
accuracy. However, the selection of features used in training 
these models is a critical factor influencing their 
performance. The integration of derivative and summative 
features in gesture recognition has recently gained attention 
as a means to enhance model accuracy. Derivative features 
capture variations in hand movements, such as speed and 
acceleration, providing dynamic information that 
complements the static spatial features of hand gestures. In 
contrast, summative features aggregate information over 
time, effectively representing complete movement patterns. 
This literature survey analyzes existing hand gesture 
recognition methods and explores the role of derivative and 
summative features in machine learning models. It examines 
feature extraction techniques, classification models, and 
their performance across different approaches, emphasizing 
the positive impact of these feature sets on the accuracy and 
reliability of gesture recognition systems. 
 K. S. Prakash centered on utilizing machine learning 
models to optimize the electrode configuration (number and 
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placement) for a hand gesture detection system based on 
wrist-worn electromyography (EMG) [17]. The features 
were ranked according to their significance scores using the 
ReliefF and Minimum Redundancy Maximum Relevance 
(MRMR) feature selection algorithms. By examining the 
sum of feature ranks and comparing the effectiveness of 
several machine learning models, including Support Vector 
Machine (SVM), K-Nearest Neighbors (KNN), Artificial 
Neural Network (ANN), and Random Forest (RF), across 
different electrode combinations, the study was able to 
determine the best electrode configurations. With the SVM 
classifier in particular, the four-electrode arrangement 
proved to be the most efficient, providing a balance between 
high accuracy and low latency. Using SVM, this setup 
obtained 85.9% accuracy, 85.93% precision, 86.27% recall, 
and 86.09% F1-score. RF came in second with 85.2% 
accuracy. 
 R. Sebbah, sought to construct a sign recognition system 
combining two descriptors, namely Improved Weber Binary 
Coding (IWBC) and Low Frequency Descriptor (LFD), in 
order to distinguish both static and dynamic hand 
movements [18]. The SVM one-against-all method with 
RBF Kernel and K-nearest neighbor (KNN) is the 
foundation of the classification system. Four datasets were 
utilized to test the recognition system: Jochen Triesch's 
dataset, the Arabic Sign Language 2018 dataset, the Arabic 
Sign Language 2001 dataset (Halawani), and Sebastien 
Marcel's Dynamic dataset. With 97.07% on the Arabic Sign 
Language 2018 dataset and 95% on Jochen Triesch's dataset, 
the results showed that IWBC utilizing SVM was able to 
obtain higher recognition rates. Using SVM, a greater 
identification rate of 100% was achieved for LFD on 
Sebastien Marcel's Dynamic Dataset. 
 H. Feng, et al. suggested a machine learning-enhanced 
smart sensor system that uses machine learning models like 
support vector machines (SVM) and long short-term 
memory networks (LSTM) to process and analyze gesture 
data. The system combines hardware devices like Flex 
sensors [19], JY901S, cameras, and smart gloves. 
Experimental results demonstrate that collaborative 
inference of multi-modal data considerably enhances the 
model's classification accuracy when compared to single or 
bi-modal data in both static and dynamic gesture 
classification tasks. 
 In another work sought to evaluate the effectiveness of 
EMG-based hand gesture identification by combining the 
most advanced machine and deep learning models with 
innovative feature extraction techniques, such as fused time-
domain descriptors, temporal-spatial descriptors, and 
wavelet transform-based features [20]. Experiments on the 
Grabmyo dataset show that the 1D Dilated CNN 
outperformed the others with a 97% accuracy rate using 
fused time-domain descriptors such waveform length ratio, 
power spectral moments, sparsity, and irregularity factor. 
Similarly, utilizing temporal-spatial descriptors (which 
contain time domain features together with extra features 
like coefficient of variation (COV) and Teager-Kaiser 
energy operator (TKEO)), random forest fared the best on 
the FORS-EMG dataset, with an accuracy of 94.95%. 
 S. A. Mousavi, et al. introduced a smart ring that can be 
worn and has a built-in Bluetooth low-energy (BLE) module 
[21]. To ensure the viability of the suggested approach, nine 
preset finger movements were added. To improve the 
accuracy of gesture recognition, well-distinguished feature 
vectors were chosen using data preprocessing techniques 
such as normalization, statistical feature extraction, random 

forest recursive feature elimination (RF-RFE), and k-nearest 
neighbors sequential forward floating selection (KNN-
SFFS). For gesture categorization, three supervised 
machine-learning algorithms—support vector machines 
(SVMs), k-nearest neighbors (KNNs), and naïve Bayes 
(NB)—were employed. Six one-finger gestures and three 
two-finger gestures can be correctly identified by the system 
with 97.1% and 97.0% accuracy, respectively, when the 
KNN is used as the primary classifier. 
 K. Challa, et al. presented a new classifier based on 
electromyography (EMG) for hand gesture identification 
[22]. To record signals pertaining to hand movements, this 
method uses separate EMG sensors positioned on different 
hand portions. Eight healthy participants participated in their 
studies, performing three different hand gestures, including 
intricate motions like flexing, lifting, and grasping an object. 
Eight time-domain features were derived from the four 
channels of EMG signals that were recorded for this study. 
These characteristics were then utilized to build classifiers 
using both logistic regression (LR) and random forest (RF) 
machine learning techniques for the three hand motions 
under investigation. The findings show that the mean 
accuracies of the LR and RF classifiers were 0.94 and 0.966, 
respectively. 
 Numerous sensor technologies utilized in the gathering 
of gesture data, which have been studied to offer information 
on both static and dynamic motions [23]. Analysis is done 
on the benefits and drawbacks of both image-based and non-
image-based technologies. A neural network-based machine 
learning technique has been created for high-precision 
gesture recognition. Testing the new approach on a database 
accessible to scientific investigation yielded positive results. 
Therefore, according to the accuracy, precision, recall, and 
F1-score metrics, the approach was able to identify the 
letters of the dactyl alphabet with an accuracy of 0.95, 0.92, 
0.95, and 0.94, respectively. 
 In other article the authors decided to use four distinct 
machine learning models on two distinct datasets—
American Sign Language (ASL) and a general gesture set—
to accurately recognize hand gestures in order to categorize 
both static and dynamic gestures for the English language 
[24]. On both datasets, every classifier we employed 
demonstrated good accuracy, and after normalization, our 
results were much better. By adjusting the input, hidden, and 
output layers, the first Artificial Neural Network (ANN) 
model was put out, yielding a 99.40% accuracy rate. The 
accuracy of the second K-Nearest Neighbors (KNN) model 
was 99.14%. The accuracy of the third Decision Tree (DT) 
model was 94.52%. Ultimately, they used the Ensemble vote 
classifier to take the ensemble of these models, which 
showed overall predictive performance and turned out to be 
a lot more generic model with an accuracy of 99.45%.  
  T. -H. Le, et al.  presented a fresh dataset of human hand 
gestures that might be useful for operating household 
appliances. An inexpensive Internet of Things (IoT) device 
with gyroscope and accelerometer sensors built in is used to 
collect the dataset [25]. Next, in order to train several 
machine learning models, we examine different features that 
were retrieved from multiple sensor data. In order to 
increase the identification rate, we also provide a 
straightforward yet efficient late fusion model from 
multimodal data. They showed that the suggested late fusion 
schema significantly increases the accuracy of gesture 
classification in the initial tests conducted on the gathered 
dataset. The late fusion procedure has the maximum 
accuracy of 87.61%. 
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 A comparative study of current hand gesture recognition 
(HGR) methods is shown in Table 1, which also highlights 
the methods employed, performance indicators, conclusions, 
and drawbacks. This comparison offers insightful 

information about the benefit and drawbacks of different 
approaches, which forms the basis for comprehending 
developments and highlighting areas in which HGR systems 
require more investigation. 

 
 
Table 1. Comparison of some existing HGR Approaches 
Author & Year Technique Used Performance Metric Findings Limitations 

K. S. Prakash, et al. 
[17] 

EMG, SVM, KNN, 
ANN, RF, MRMR, 
ReliefF 

Accuracy: 85.9%, 
Precision: 85.93%, 
Recall: 86.27%, F1-
score: 86.09% 

Optimal 4-electrode 
configuration achieved 
high accuracy and low 
latency with SVM 
classifier. 

Limited to wrist-
wearable EMG 
systems; further 
investigation needed 
for other electrode 
placements. 

R. Sebbah, et al. [18] 

Low Frequency 
Descriptor (LFD), 
Improved Weber 
Binary Coding 
(IWBC), SVM (one-
vs-all), KNN 

IWBC: 97.07% (ArSL 
2018), 95% (Jochen 
Triesch’s), LFD: 
100% (Sebastien 
Marcel’s) 

IWBC achieved higher 
recognition rates with 
SVM, especially on 
Arabic and Jochen 
Triesch’s datasets. 

Limited to static and 
dynamic gesture 
datasets; could benefit 
from real-time 
recognition testing. 

H. Feng, et al. [19] 

Multi-modal data, 
SVM, LSTM, Flex 
sensor, JY901S, 
Camera, Smart gloves 

Improved accuracy 
with multi-modal data 
over single/bi-modal 
data 

Multi-modal data 
fusion significantly 
improved 
classification accuracy 
for static and dynamic 
gestures. 

Need for better 
hardware integration 
and scalability for 
real-world use. 

P. N. Aarotale, et al. 
[20] 

1D Dilated CNN, RF, 
Fused time-domain 
descriptors, Temporal-
spatial descriptors 

97% (1D Dilated CNN 
on Grabmyo dataset), 
94.95% (RF on FORS-
EMG dataset) 

Best performance 
observed with 1D 
Dilated CNN using 
fused time-domain 
features on Grabmyo 
dataset. 

Limited to specific 
datasets; other gesture 
datasets could be 
tested for 
generalization. 

S. A. Mousavi, et al. 
[21] 

Smart ring, Bluetooth, 
Accelerometer, 
Gyroscope, RF-RFE, 
KNN-SFFS, SVM, 
KNN, NB 

Accuracy: 97.1% (1-
finger gestures), 97% 
(2-finger gestures) 

Proposed method 
achieved high 
accuracy with KNN 
using KNN-SFFS 
features, enhancing 
feature selection 
efficiency. 

Focuses on finger 
gestures; more 
complex gestures 
could be explored. 

K. Challa, et al. [22] 
EMG, Random Forest, 
Logistic Regression, 
Time-domain features 

Accuracy: 96.6% 
(RF), 94% (LR) 

Both RF and LR 
achieved high 
accuracy in hand 
gesture recognition 
using EMG signals 
from different hand 
parts. 

Limited to simple 
hand gestures; other 
gestures and sensor 
types could improve 
generalization. 

F. J. Abdullayeva, et 
al. [23] 

Neural networks, 
Static and dynamic 
gesture recognition 

Accuracy: 0.95, 
Precision: 0.92, 
Recall: 0.95, F1-score: 
0.94 

Achieved high 
precision in 
identifying gestures 
from the dactyl 
alphabet. 

Relatively small scope 
(dactyl alphabet); 
could be extended to 
other gesture types. 

M. Mahzabin, et al. 
[24] 

ANN, KNN, Decision 
Tree, Ensemble voting 
classifier, ASL, 
General gesture set 

Accuracy: 99.4% 
(ANN), 99.14% 
(KNN), 99.45% 
(Ensemble vote 
classifier) 

Ensemble method 
outperformed 
individual classifiers, 
with high accuracy on 
ASL and general 
gesture datasets. 

Limited to ASL and 
English gestures; 
might not generalize 
to other languages. 

T.-H. Le, et al. [25] 
IoT, Accelerometer, 
Gyroscope, Late 
fusion model 

Accuracy: 87.61% 

Late fusion of 
multimodal data 
enhanced gesture 
recognition accuracy 
for home appliance 
control. 

Low-cost IoT device 
may limit real-world 
applications due to 
sensor precision and 
range. 

 
 This research work is based on the hand gesture 
recognition based on EMG signals. The proposed schemes 

are having three phases which are data pre-processing, 
feature extraction and classification. The feature extraction 
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based are broadly classified into time, frequency and time-
frequency based schemes for the hand gesture recognition. 
Three new features are introduced which are derivative 
simple square integral, threshold slope sign change, absolute 
value of Summation of the Temporal Moments. These three 
new introduced features are the main contribution and 
motivation to increase accuracy for the hand gesture 
recognition. The proposed features are tested on different 
classifiers for hand gesture recognition. Machine learning 
models such as XGBoost, logistic regression, and SVM were 
then applied to both the existing features and the newly 
proposed features. The proposed features resulted in an 
improvement of up to 4.98% in classification accuracy over 
the existing features. 
 
 
3. Materials and methods 
 
The sEMG signal is a one-dimensional time series 
influenced by various factors, including the motor unit (MU) 
model, the number of MUs, and metabolic status. As a 
result, sEMG signals provide valuable insights into 
neuromuscular system activity. Essentially, sEMG signals 
are bioelectrical signals captured from the surface of human 
skeletal muscles using surface electromyography electrodes. 
These signals reflect neuromuscular activity and contain 
extensive information related to limb motion. Different limb 

movements exhibit distinct muscle contraction patterns, 
leading to variations in myoelectric signal features. By 
analyzing these features, it is possible to distinguish between 
various limb movement patterns. This research involved six 
gestures: elbow flexion, elbow extension, wrist extension, 
wrist flexion, wrist supination, and wrist pronation, as 
illustrated in Fig. 1. The study included ten healthy male 
participants, aged 20 to 37 years, all of whom were right-
handed. To collect sEMG signals from the forearm muscles, 
two MyoTrace 400 devices were used in the biomedical 
laboratory of the National Institute of Technical Teachers' 
Training & Research (NITTTR), Chandigarh, India. 
Typically, the dominant energy of sEMG signals is 
concentrated in the frequency range of 20–500 Hz, with 
amplitudes limited to 0–10 mV. Consequently, the sampling 
frequency was set to 1000 Hz, and a bandpass filter with a 
bandwidth of 20–500 Hz was applied [26]. Each subject 
performed six hand motions: wrist flexion, wrist extension, 
elbow flexion, elbow extension, wrist pronation, and wrist 
supination. The tests were repeated ten times, with each 
repetition lasting 5 seconds, resulting in a total of 50 seconds 
of EMG signals per subject for each motion. None of the 
subjects had neuromuscular disorders. They were well-
trained in all the movements before performing the hand 
motions and received a demonstration of the research 
procedure beforehand. 

 

 
Fig. 1. Selected gestures. (a) WF: wrist flexion; (b) WE: wrist extension; (c) WP: wrist pronation; (d) WS: wrist supination; (e) EF: elbow flexion; (f) 
EE: elbow extension; 
 
4. Feature Extraction 
 
In hand gesture recognition, effective feature extraction 
plays a pivotal role in improving the accuracy and 

performance of machine learning models. This paper focuses 
on utilizing both derivative and summative features to 
enhance gesture recognition systems. Derivative features 
capture dynamic aspects of gestures, such as changes in 

(a) (b) (c) 

(d) (e) (f) 
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velocity, acceleration, and directional shifts, which are 
crucial for distinguishing gestures that involve movement. 
On the other hand, summative features aggregate the overall 
motion patterns across the gesture sequence, providing a 
holistic representation of the gesture. By combining these 
two feature types, the proposed method ensures that both the 
fine-grained details of hand motion and the general 
trajectory of the gesture are captured, leading to more robust 
recognition, particularly for complex or similar gestures. 
This approach leverages key spatial and temporal features, 
such as hand shape, orientation, and motion over time, 
enhancing the machine learning model's ability to classify 
both static and dynamic gestures with higher precision. EMG 
signal analysis features are typically categorized into three 
primary domains: time, frequency, and time- frequency or 
time-scale representation. 
 
4.1 Time-based Features 
Time domain features are computed directly from the 
unprocessed EMG time series, making them easy to use 
without requiring additional modifications. Their strong 
classification capability has led to widespread application in 
both scientific and clinical domains, particularly in low-
noise environments. Additionally, they are preferred due to 
their lower computational complexity compared to 
frequency and time-scale domain features. The key time 
domain features are described below: 
 
4.1.1. Integrated electromyography (IEMG) 
In medical settings and for detecting onsets in EMG non-
pattern recognition, IEMG is commonly utilized. It 
calculates the total absolute values of EMG signal 
amplitudes and is expressed as [27]: 
 
𝐼𝐸𝑀𝐺 = ∑ |𝑥!|"

!#$ 			                                                             (1) 
 
 In this context, 𝑥! is used to denote the signal of EMG in 
a part i. In this, variable N represents the EMG signal’s 
length.  
 
4.1.2. Variance (VAR) 
This formula, as presented in [27], is used for calculating the 
power density of the sEMG signal, which is one of its key 
applications. 
 
VAR = $

"%$
∑ 𝑥!&"
"%$                                                             (2) 

 
4.1.3. Zero crossing (ZC) 
The frequency characteristics of the EMG signal are derived 
from this time-domain metric. It measures the rate at which 
the signal's amplitude values deviate from zero. A threshold 
condition is implemented to mitigate low-voltage variations 
and background noise. The computation is given as follows 
[27]: 
 
𝑍𝐶 =	∑ [𝑠𝑔𝑛(𝑥! 	×	𝑥!'$)"%$

!#$ 	∩ 	 |𝑥! −	𝑥!'$| 	≥
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑]	;	                        (3) 
 
𝑠𝑔𝑛(𝑥) = ?1, 𝑖𝑓	𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 																								                   (4) 

 
4.1.4. RMS (Root mean square) 
For the study of EMG signals, this characteristic is often 
used. It is presented as a Gaussian random process with 
amplitude modulation, corresponding to contraction 
conditions with a constant force and no fatigue. The formula 

for the RMS feature is the following [27]: 
 

𝑅𝑀𝑆 =	H$
"
	∑ 𝑥!&"

!#$                (5) 

4.1.5. MYOP (Myopulse percentage rate) 
This characteristic pertains to the average myopulse output 
[27], which is assigned a value of 1 if the absolute value of 
the EMG signal exceeds a pre-set threshold. Using a specific 
numerical setup, the computation is shown as 
 
𝑀𝑦𝑜𝑝 =	 $

"
	∑ [𝑓	(	𝑥!"

!#$ )]                                       (6) 
 

𝑓(𝑥) = ?1, 𝑖𝑓	𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
0,													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 								                                      (7) 

 
4.1.6. MAV (Mean absolute value) 
Just like the IEMG feature used as an onset index, MAV is a 
feature commonly used in EMG signal analysis, especially 
for detecting sEMG prosthetic limb control signals. The 
amplitude of signal within a section is represented as an 
average by this feature, and its mathematical expression is as 
follows: 
 
𝑀𝐴𝑉 = $

"
∑ |𝑥!|"
!#$ 							                                                       (8) 

 
4.1.7. WL (Waveform length) 
WL computes the complexity of the signal, representing the 
increasing magnitude of the waveform over a given duration 
of time. Some works refer to this feature as wavelength 
(WAVE) [27]. Its mathematical expression is as follows: 
 
WL= ∑ |𝑥!'$ − 𝑥!|"%$

!#$ 			                                                       (9) 
 
4.1.8. ACC (Average amplitude change) 
It corresponds to WL, with the distinction that the waveform 
length is averaged [27]. Its formula is given below: 
 
𝐴𝐴𝐶 = $

"
∑ |𝑥!'$ − 𝑥!|"
!#$ 	                                         (10) 

 
4.1.9. LOG 
An estimate of the force used to contract muscles is also 
provided by this feature. However, the characterization of 
the non-linear detector is modified to depend on logarithms, 
giving rise to the LOG feature [27], which can be formulated 
as follows 
 
𝐿𝑂𝐺 = 𝑒

!
"∑ *+,(|/#|)"

#$! 	                                        (11) 
 
4.2 Frequency-based Features 
Studies on motor unit (MU) recruitment and muscle fatigue 
primarily rely on frequency or spectral domain 
characteristics. Power Spectral Density (PSD) analysis is 
particularly important in this domain. Derived from the 
autocorrelation function of the EMG signal's Fourier 
transform, PSD is analyzed using various statistical features. 
Some examples of frequency-based features include 
 
4.2.1. MNF (Mean frequency) 
The Mean Frequency (MNF) is obtained by summing the 
EMG power spectrum and its corresponding frequencies. 
This sum is then divided by the total power of the spectrum. 
Its computation formula is [27]: 
 
𝑀𝑁𝐹 = ∑ 𝑓0𝑃01

0#$ ∑ 𝑃01
0#$R )                               (12) 
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 In this formula, 𝑓0  and 𝑃0  respectively represent 
frequency spectrum and power spectrum at frequency bin 𝑗. 
Also, 𝑀 in the indicator of the length of this bin. 
 
4.2.2. Mean power (MNP): 
MNP represents the mean power of the signal’s power 
spectrum and can be calculated as follows: [27]: 
 
𝑀𝑁𝑃 = ∑ 𝑃01

0#$ 𝑀⁄ 		                                         (13) 
 
4.2.3. Total power (TP) 
It represents the summation of the EMG power spectrum and 
can be defined as follow [27]: 
  
𝑇𝑃 = ∑ 𝑃0 = 𝑆𝑀𝑂1

0#$                                           (14) 
 
4.2.4. Median frequency (MDF) 
For the study of EMG signals, it is a frequently utilized 
characteristic. It is modeled as a Gaussian random process 
with amplitude modulation, relevant to contraction 
conditions involving a steady force and no fatigue. The 
mathematical expression for the RMS feature i [27]: 
 
∑ 𝑃0 = ∑ 𝑃01

0#123 = $
&
∑ 𝑃01
0#$

123
0#$ 		                                   (15) 

 
4.2.5. Peak frequency (PKF) 
PKF represents the frequency at which maximum power 
occurs. It is calculated as follows: [27]: 
 
𝑃𝐾𝐹 = max	(𝑃0), 𝑗 = 1,2,… ,𝑀								                               (16) 
 
4.2.6. FR (Frequency ratio) 
FR is recommended for distinguishing between muscle 
contraction and relaxation. To achieve this, the percentage 
ratio between the EMG signal's high and low frequencies 
must be determined [27].                            
 
𝐹𝑅 = ∑ 𝑃0456

0#556 ∑ 𝑃0476
0#576R                              (17) 

 
 In the low-frequency band, ULC represents the upper 
cutoff frequency, while LLC denotes the lower cutoff 
frequency. Similarly, in the high-frequency band, LHC and 
UHC represent the lower and upper cutoff frequencies, 
respectively 
 
4.3 Time-Frequency-based Features 
These features are implemented using Fast Discrete Wavelet 
Transform (DWT), incorporating both temporal and spectral 
information to capture various aspects such as trends, 
segmentations, discontinuities in higher derivatives, and 
self-similarity, which cannot be identified using time and 
frequency features alone.σ 

 
4.3.1. DASDV (Difference absolute standard deviation 
value) 
This feature is similar to the RMS feature and is evaluated as 
the standard deviation (SD) of the wavelength [27]: 
 

𝐷𝐴𝑆𝐷𝑉 = H $
"%$

∑ (𝑥!'$ − 𝑥!)&"
!#$ 		                     (18) 

 
 In this, 𝑥! is utilized to denote EMG signal within section 
𝑖 and the signal’s length is illustrated with 𝑁. 
 
4.3.2. WAMP (Wilson amplitude) 
The purpose of this feature is to specify the signal's 
frequency data. This measure is evaluated as the number of 
times the difference in signal amplitude between two 
consecutive segments exceeds a predefined threshold. 
WAMP is expressed as [27]: 
 
𝑊𝐴𝑀𝑃 = ∑ [𝑓|𝑥8 − 𝑥8'$|];"%$

!#$                                (19) 
 
𝑓(𝑥) = ?1, 𝑖𝑓	𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 							                           (20) 

 
4.3.3. Wavelet entropy (WENT) 
It is utilized to compute the degree of order/disorder in 
sEMG signals and to generate information related to the 
primary dynamical process of sEMG signals. This feature is 
defined a [27]: 
 
𝐸(𝑐) = −∑ 𝑐!& log(𝑐!&)! 												                                           (21) 
 
 In this, 𝑐! is used to illustrate the ith coefficient of an 
sEMG signal within an orthonormal base.  
 
 
5. Research Methodology 
 
In this research work, three new features have been added 
for hand gesture recognition from EMG signals. Machine 
learning models such as XGBoost, logistic regression, and 
SVM were then applied to both the existing features and the 
newly proposed features. The proposed features resulted in 
an improvement of up to 4.98% in classification accuracy 
over the existing features. The complete flowchart of the 
proposed work is depicted in Figure 2. The first feature is 
the derivative of the simple square integral, which is the 
second-order derivative of the simple square integral. The 
second feature is the threshold slope sign change, and the 
last feature is the absolute value of the summation of the 
temporal moment, which is derived from the temporal 
moment. The descriptions of these three features are given 
below: 

 

 
Fig. 2. Flowchart of Proposed Work 
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5.1 DSSI (Derivative Simple Square Integral) 
An EMG signal's energy can be represented by the SSI as: 
 
𝑆𝑆𝐼 = ∑ 𝑥!&"

!#$ 	                                                            (22) 
 
where N is the number of specimens in each section and xi is 
the ith specimen. DSSI is the second derivative of simple 
square integral and it is defined as:  
 
y=𝑓(𝑥)         
 
9:
9/
= 	𝑓′(𝑥)      

 
𝑓′(𝑥)=0 where 𝑥$	𝑎𝑛𝑑	𝑥&    
                  
9
9/
𝑓;(𝑥). = 𝑓;;(𝑥)         

 
Where 𝑥$ = 𝑓;;(𝑥) → 𝑓;;(𝑥$) < 0	       
    
 𝑥$	𝑖𝑠	𝑙𝑜𝑐𝑎𝑙	𝑚𝑖𝑛𝑖𝑚𝑢𝑚   
 
Where 𝑥& = 𝑓;;(𝑥) → 𝑓;;(𝑥$) > 0        
    
𝑥&	𝑖𝑠	𝑙𝑜𝑐𝑎𝑙	𝑚𝑖𝑥𝑖𝑚𝑢𝑚 
 
DSSI = ∑ 𝑓′′(𝑥!)"

!#$                                          (23) 
 
 By measuring abrupt fluctuations in energy in any 
direction, the Absolute Value of DSSI is able to identify 
important acceleration patterns in EMG data. This improves 
feature discrimination for intricate hand movements, reduces 
noise effects, and increases classification accuracy by 
identifying unique transition points between gestures. 
 
5.2 Threshold Slope Sign Change (TSSC) 
The threshold slope sign change parameter is derived from 
the slope sign change parameter. Utilizing the threshold 
function which eliminates noise-induced slope changes, 
TSSC shows how frequently the EMG waveform's slope 
alters sign across an analysis window. This characteristic 
defines the frequency parameter of the EMG signal. The 
mathematical representation is given below: 
 
TSSC=∑ 𝑓("%$

!#& 𝑥$ − 𝑥!%$) ∗ (𝑥! − 𝑥!'$)                     (24) 
 
𝑓(𝑥) = m1, 𝑖𝑓	𝑥 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 n					                                    (25) 

 
 Where 𝑥! is the current scope change, 𝑥!'$	 is future 
change and 𝑥!%$ is the previous change in the scope relative 
to frequency 
 
5.3 Absolute value of Summation of the Temporal 
Moments (AVTM) 
The moments and probability density function moments are 
comparable, with multiple applications for the square of the 
temporal history. Negative amplitude issues are 
circumvented. When employing the squared time period, 
there are useful properties that establish a relationship 
between time-domain moments and frequency-domain 
moments 
 
Temporal Moment (TM) =$

"
∑ 𝑥!

+=9>=($	@+	")"
!#$                 (26) 

 
 As represented in the equation, the temporal moment is 

described as the number of samples in the signal, denoted by 
N. The variable x represents the current sample of the signal, 
and the order defines the analysis window number 
 

Analysis Window=∑ 𝑥8
!
%A

8#$                               (27) 
 
 The analysis window is the current segment of the signal 
that needs to be analyzed, and its value always ranges 
between 1 and 5. 
 

AVTM=o
$
"∑ /#

&"
#$!

A
o                                                   (28) 

 
 AVTM represents the absolute value of the summation, 
and the window of AVTM, defined within brackets, 
calculates the absolute summation value Temporal signal 
patterns are captured by the AVTM feature, which uses 
absolute values to prevent negative amplitude issues. It 
examines signal dynamics across analysis windows, which 
makes it useful for identifying subtle variations between 
analogous gestures. Normalization by window size (k) 
assures uniform feature scaling despite window length. 
 
 
6. Results & Discussion 
 
This research focuses on hand gesture recognition from 
EMG signals using machine learning models. To predict 
hand movements, various types of information are extracted 
from EMG signals, categorized into time-domain, 
frequency-domain, and time-frequency-domain features. In 
this study, three new features are introduced: Derivative 
Simple Square Integral, Threshold Slope Sign Change, and 
Absolute Value of Summation of the Temporal Moments. 
Machine learning models such as XGBoost, Logistic 
Regression (LR), and Support Vector Machine (SVM) are 
employed for hand gesture recognition. The results are 
presented by comparing the performance of existing features 
and the newly proposed features across different classifiers. 
Cross-validation is performed using different fold sizes to 
assess the robustness of the features. The features used for 
hand gesture recognition include time-domain, frequency-
domain, and time-frequency-domain features. The classifiers 
XGBoost, Logistic Regression, and SVM—are applied to 
various features such as iEMG, VAR, ZC, RMS, MYOP, 
MAV, WL, ACC, LOG, MNF, MNP, TP, MDF, PKF, FR, 
DASDV, WAMP, and WENT. As shown in Table 2, the 
PKF feature yields the highest accuracy across all classifiers, 
including XGBoost, Logistic Regression, and SVM. 
 
Table 2. Accuracy of machine learning models with existing 
features 

Feature XGboost Logistic Regression SVM 
iEMG 63.45 59.89 67.89 
VAR 72.45 70.89 74.67 
ZC 46.78 52.34 56.78 

RMS 67.89 66.78 67 
MYOP 69.75 70.67 68.12 
MAV 66.13 43.54 60.19 
WL 61.90 60.45 59.18 
ACC 76.89 79.65 72.34 
LOG 61.23 60.74 67.34 
MNF 81.52 80.81 76.89 
MNP 77.67 75.74 76.84 
TP 65.67 63.45 63.76 

MDF 78.90 75.89 81.12 
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PKF 85.78 82.34 86.78 
FR 65.78 66.65 71.90 

DASDV 56.78 56.12 59.45 
WAMP 72.34 73.76 74.32 
WENT 72.56 70.56 74.56 

 

 
 
Fig. 3. Performance of Machine Learning Models with Existing Features 
 
 
 Figure 3 illustrates the application of three machine learning 
algorithms—XGBoost, Logistic Regression (LR), and Support 
Vector Machine (SVM)—for hand gesture recognition. The 
models utilize features extracted from time, frequency, and time-
frequency domains. The extracted features include iEMG, VAR, 
ZC, RMS, MYOP, MAV, WL, ACC, LOG, MNF, MNP, TP, 
MDF, PKF, FR, DASDV, WAMP, and WENT. Among these, 
PKF emerges as the most effective feature, achieving the highest 
accuracy across all classifiers, including XGBoost, Logistic 
Regression, and SVM. 
 Table 3 presents the results of applying existing features with 
the SVM classifier under different fold cross-validations (FCV) 
settings, including 2, 4, 6, 8, and 10 folds. The analysis reveals that 
8-fold and 10-fold cross-validation yield the most stable results for 
hand gesture recognition 
 
Table 3. Accuracy of SVM classifier on existing features 

Feature 2 FCV 4 FCV 6 FCV 8 FCV 10 FCV 
iEMG 67.89 69.90 70.45 70.13 70.13 
VAR 74.67 65.56 66.23 66.37 66.37 
ZC 56.78 56.10 57.89 57.34 57.34 

RMS 67 65.67 63.67 63.61 63.61 
MYOP 68.12 66.89 65.46 65.43 65.43 
MAV 60.19 61.21 60.89 60.83 60.83 
WL 59.18 56.67 55.12 55.10 55.10 
ACC 72.34 70.34 68.45 68.43 68.43 
LOG 67.34 68.89 67.34 67.34 67.34 
MNF 76.89 78.78 75.34 75.30 75.30 
MNP 76.84 79.10 78.45 78.42 78.42 
TP 63.76 64.56 64.34 64.30 64.30 

MDF 81.12 80.34 80.12 80.10 80.10 
PKF 86.78 87.34 87.78 87.72 87.72 
FR 71.90 75.34 75.42 75.40 75.40 

DASDV 59.45 58.45 58.32 58.30 58.30 
WAMP 74.32 73.34 73.90 73.91 73.91 
WENT 74.56 72.89 72.90 72.86 72.86 

 
 As shown in Table 4, Logistic Regression is applied to classify 
existing features, including iEMG, VAR, ZC, RMS, MYOP, 
MAV, WL, ACC, LOG, MNF, MNP, TP, MDF, PKF, FR, 
DASDV, WAMP, and WENT. The model is evaluated using 
cross-validation with different fold settings. The results indicate that 
the highest accuracy for hand gesture recognition is achieved at the 
10th fold. 
 

Table 4. Average Accuracy of Logistic Regression classifier 
on existing features 

Feature 2 FCV 4 FCV 6 FCV 8 FCV 10 FCV 
iEMG 60.18 61.11 60.09 60.09 61.11 
VAR 70.21 70.31 69.32 69.32 70.31 
ZC 52.34 51.78 50.17 50.17 51.78 

RMS 66.78 65.23 66.12 66.12 65.23 
MYOP 70.67 69.34 68.54 68.54 69.34 
MAV 43.54 44.60 43.43 43.43 44.60 
WL 60.45 61.20 62.10 62.10 61.20 
ACC 79.65 80.10 79.05 79.05 80.10 
LOG 60.74 61.56 59.51 59.51 61.56 
MNF 80.81 79.45 78.42 78.42 79.45 
MNP 75.74 77.20 78.10 78.10 77.20 
TP 63.45 64.14 65.11 65.11 64.14 

MDF 75.89 77.11 76.23 76.23 77.11 
PKF 82.34 83.10 82.56 82.56 83.10 
FR 66.65 65.45 64.36 64.36 65.45 

DASDV 56.12 56.11 55.34 55.34 56.11 
WAMP 73.76 74.89 75.12 75.12 74.89 
WENT 70.56 73.52 75.78 75.78 73.52 

 
 As shown in Table 5, the XGBoost classifier is applied 
with five cross-validation settings: 2, 4, 6, 8, and 10 folds. 
These cross-validations are tested using the existing feature 
set, including iEMG, VAR, ZC, RMS, MYOP, MAV, WL, 
ACC, LOG, MNF, MNP, TP, MDF, PKF, FR, DASDV, 
WAMP, and WENT. The results indicate that the 8-fold and 
10-fold methods provide the most stable performance, 
achieving an accuracy of approximately 62%. 
 
Table 5. Average Accuracy of XGBoost classifier on 
existing features 

Feature 2 FCV 4 FCV 6 FCV 8 FCV 10 FCV 
iEMG 63.45 62.41 62.40 62.40 62.40 
VAR 72.45 70.23 70.65 70.65 70.65 
ZC 46.78 44.35 44.30 44.30 44.30 

RMS 67.89 64.10 64.20 64.20 64.20 
MYOP 69.75 68.17 68.12 68.12 68.12 
MAV 66.13 65.12 65.64 65.64 65.64 
WL 61.90 58.18 58.21 58.21 58.21 
ACC 76.89 74.34 74.30 74.30 74.30 
LOG 61.23 59.10 59.20 59.20 59.20 
MNF 81.52 78.32 78.33 78.33 78.33 
MNP 77.67 76.16 76.75 76.75 76.75 
TP 65.67 64.21 64.31 64.31 64.31 

MDF 78.90 75.14 75.19 75.19 75.19 
PKF 85.78 84.10 84.96 84.96 84.96 
FR 65.78 64.64 64.84 64.84 64.84 

DASDV 56.78 55.23 55.28 55.28 55.28 
WAMP 72.34 70.21 70.38 70.38 70.38 
WENT 72.56 70.54 70.75 70.75 70.75 

 

 
Fig. 4. Confusion of SVM with PKF Feature 
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 As shown in Figure 4, a confusion matrix is generated 
for the PKF feature with the SVM classifier, corresponding 
to the number of classes. With an F1-score of 1.0, Wrist 
Flexion (class 1) attains ideal precision (10/10 = 100%) and 
recall (10/10 = 100%) while examining assessment metrics 
by class. Class 3 wrist pronation performs the worst, with a 
precision of 71.4% (5/7) and recall of 55.6% (5/9). As a 
whole, the model's accuracy is 85.78%. According to a 
normalized confusion matrix, 11% of samples with wrist 
pronation are incorrectly classified as elbow flexion, 11% as 
wrist flexion, and 22% as elbow extension. Wrist pronation 
has a true positive rate of just 0.56. Physiological proximity 
associations are shown through assessing erroneous patterns; 
gestures that share comparable muscle activation patterns 
(wrist-elbow movements) exhibit a greater degree of 
uncertainty. Particularly between Wrist Extension and Wrist 
Pronation, the matrix shows asymmetric misinterpretation (2 
instances in one direction, 0 in the other). Clear 
identification for classes 1, 4, and 6 can be observed through 
analysis of diagonal supremacy indicating that these gesture 
patterns have more unique PKF traits than others, thereby 
indicating that the PKF feature, when used with the SVM 
classifier, outperforms all other feature-classifier 
combinations. 
 Furthermore, as illustrated in Table 6, different machine 
learning models, including XGBoost, Logistic Regression, 
and SVM, are evaluated on the proposed features. The 
analysis reveals that the SVM model achieves the highest 
accuracy compared to XGBoost and Logistic Regression for 
hand gesture recognition 

 
Table 6. Accuracy of Machine learning model with 
proposed features 
Features XGboost Logistic Regression SVM 

DSSI 89.78 88.78 90.34 
TSSC 90.76 86.78 91.23 

AVTM 75.78 74.78 79.56 
 

 
Fig. 5. Performance of Machine Learning Models with proposed 
Features 
 
 As shown in Figure 5, three new features—DSSI, TSSC, 
and AVTM—are introduced in this research. When 
XGBoost, Logistic Regression, and SVM algorithms are 
applied to these features, the highest accuracy of 91% is 
achieved using the TSSC feature. 
 Additionally, as shown in Table 7, the SVM classifier is 
implemented on the proposed features across different cross-
validation folds, including 2, 4, 6, 8, and 10 FCV. The 
proposed features (DSSI, TSSC, AVTM) are evaluated using 
the SVM classifier, with results indicating that the 10-fold 
cross-validation provides the most stable accuracy for hand 
gesture recognition. 

 
Table 7. Average Accuracy of SVM classifier on Proposed 
features 

Features 2 FCV 4 FCV 6 FCV 8 FCV 10 FCV 
DSSI 90.34 90.89 90.65 90.54 92.01 
TSSC 91.23 91.34 91.30 92.10 91.67 

AVTM 79.56 79.52 79.50 78.89 80.21 
 
 As shown in Table 8, the Logistic Regression classifier 
is applied to the proposed features—DSSI, TSSC, and 
AVTM—using different cross-validation folds (2, 4, 6, 8, 
and 10 FCV). The model is tested across these folds, and the 
results indicate that the 10-fold cross-validation provides the 
most stable accuracy for hand gesture recognition 
 
Table 8. Average Accuracy of Logistic Regression classifier 
on Proposed features 
Features 2 FCV 4 FCV 6 FCV 8 FCV 10 FCV 

DSSI 88.78 88.12 87.10 88.20 89.34 
TSSC 86.78 86.70 84.56 83.32 84.30 

AVTM 74.78 74.54 74.50 74.54 73.50 
 
 As shown in Table 9, the XGBoost classifier is applied to 
the proposed features—DSSI, TSSC, and AVTM—using 
different cross-validation folds (2, 4, 6, 8, and 10 FCV). The 
model is tested across these folds, and the results indicate that 
the 10-fold cross-validation provides the most stable accuracy 
for hand gesture recognition. 
 
Table 9. Average Accuracy of XGBoost classifier on 
Proposed features 
Features 2 FCV 4 FCV 6 FCV 8 FCV 10 FCV 

DSSI 89.78 89.10 88.20 87.10 88.13 
TSSC 90.76 90.10 90.05 90.32 90.10 

AVTM 75.78 73.53 73.40 74.54 76.31 
 

 
Fig. 6. Confusion Matrix of proposed Features 
 
 As shown in Figure 6, the confusion matrix for the SVM 
classifier using the TSSC feature is presented with respect to 
the number of classes. The x-axis represents the predicted 
values, while the y-axis represents the actual values. The 
matrix exhibits a remarkable 90.76% overall accuracy, with 
a particularly significant diagonal dominance that suggests 
viable class separation. For the majority of gestures, class-
wise metrics of performance demonstrate superior results: 
Classes 1 (WF), 2 (WE), 4 (WS), and 5 (EF) attain precision 
and recall levels at or close to 100%.Class 1 (one instance), 
Class 2 (one instance), and Class 6 (EE) (two instances) all 
exhibit misclassifications, with Class 3 (wrist pronation) 
having the lowest recall (5/9 accurate) and the most 
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challenging gesture. This implies that categorization 
performance is impacted by anatomical proximity, with 
pattern overlap occurring due to identical muscle activation 
characteristics. While Class 6(EE) exhibits lower precision 
at 60% (3/5), the majority of classes have noticeably higher 
accuracy scores: Class 3 (100%), Class 4 (100%), and Class 
5 (100%). The majority of the model's perplexity is caused 
by wrist pronation, as evidenced by the skewed pattern of 
the error distribution. The assertion that TSSC provides 
better hand gesture identification ability with the SVM 
classifier is evidenced by the TSSC feature's increased 
performance for Class 2 (WE) and Class 5 (EF) in contrast 
to the PKF feature confusion matrix in Figure 4. The 
analysis indicates that the TSSC feature, when used with the 
SVM classifier, delivers the best performance for hand 
gesture recognition. 
 
Table 10. Precision Analysis 

Model 2 FCV 4 FCV 6 FCV 8 FCV 10 FCV 
XGBoost 72..78 72.67 74.89 76.23 75.90 
Logistic 

Regression 
81.23 80.89 80.12 82.89 82.45 

SVM 85.78 86.12 86.90 87.67 88.90 
Proposed 91.78 90.16 90.16 90.89 90 

 

 
Fig. 7. Precision Analysis 
 
 As shown in table 10 and figure 7, the precision value of 
proposed model is compared with other machine learning 
models like XGBoost, Logistic regression and SVM on 
different cross validation values. It is analyzed that proposed 
model has maximum precision value for the hand gesture 
recognition  

 
Table 11. Recall Analysis 

Model 2 FCV 4 FCV 6 FCV 8 FCV 10 FCV 
XGBoost 72..78 72.67 74.89 76.23 75.90 
Logistic 

Regression 
81.23 80.89 80.12 82.89 82.45 

SVM 85.78 86.12 86.90 87.67 88.90 
Proposed 91.78 90.16 90.16 90.89 90 

 

 
Fig. 8. Recall Analysis 
 
 As shown in table 11 and figure 8, the recall value of 
proposed model is compared with other machine learning 
models like XGBoost, Logistic regression and SVM on 
different cross validation values. It is analyzed that proposed 
model has maximum precision value for the hand gesture 
recognition 
 
7. Conclusion and Future Scope 
 
In this study, a sEMG dataset from ten healthy subjects was 
utilized to recognize six different hand motions. After 
acquiring the sEMG signals, preprocessing, feature 
extraction, and classification were performed. To improve 
classification accuracy, three new feature sets were 
introduced and critically compared with existing features. 
Machine learning classifiers, namely XGBoost, Logistic 
Regression, and SVM, were applied to assess the accuracy 
of both existing and proposed features. Among the existing 
features, PKF achieved the highest accuracy of 85.78% for 
hand gesture recognition. However, the newly proposed 
TSSC feature demonstrated superior performance, achieving 
a maximum accuracy of 90.76% with the SVM classifier—
an improvement of approximately 4.98% over existing 
features. 
 For future work, integrating advanced sensor 
technologies, such as infrared depth cameras or wearable 
motion sensors, could enhance the robustness of gesture 
recognition systems. Additionally, accuracy can be further 
optimized using genetic algorithms (GA), particle swarm 
optimization (PSO), or a parallel-series combination of 
different optimization techniques. 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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