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Abstract 
 

The exponential growth of data has significantly increased the importance of data safety and advanced analysis techniques 
in Big Data (BD) environments. Intrusion Detection Systems (IDS) play a critical role in monitoring and analyzing data to 
identify intrusions within networks or systems. However, the high volume, variability, and velocity of data generated in 
modern networks present challenges for traditional methods, leading to inefficiencies and complexities. To address these 
issues, BD techniques have been integrated with IDS to enhance efficiency and accuracy. This manuscript presents the 
Artificial Hummingbird Algorithm with Artificial Intelligence-Driven Intrusion Detection in Big Data Environment 
(AHAAI-IDBDE). The AHAAI-IDBDE framework employs Feature Selection (FS) with hyperparameter tuning to 
optimize intrusion detection. The MapReduce framework is used to handle BD processing, and Z-score normalization 
scales the input data. To select an optimal set of features, the Binary Volleyball Premier League (BVPL) algorithm is 
utilized, while intrusions are detected using the Deep Variational Autoencoder (DVAE) model. Hyperparameter tuning is 
conducted using the Artificial Hummingbird Algorithm (AHA). The performance of the AHAAI-IDBDE method has been 
evaluated using a benchmark IDS dataset. Experimental results demonstrate that the proposed method achieves superior 
accuracy and efficiency compared to existing systems, as evidenced by extensive comparative analysis. 
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1. Introduction 
 
Big Data (BD) presents significant challenges in terms of 
management, storage, and analysis when employing 
conventional software and database techniques [1]. BD is 
characterized by its high velocity, volume, and variety of data, 
necessitating innovative methodologies for effective 
management. An Intrusion Detection System (IDS) serves as 
a software or hardware monitoring tool that scrutinizes data 
to detect any potential attacks targeting a system. 
Conventional IDS models tend to complicate networks and 
diminish effectiveness in handling BD due to the intricate and 
time-consuming nature of their analysis processes [2]. 
Consequently, the system remains susceptible to threats for 
prolonged durations prior to receiving any notifications [3]. 
Thus, leveraging BD methodologies for the evaluation and 
storage of data within IDS can significantly mitigate training 
and computational durations [4]. 
 The IDS comprises two principal detection 
methodologies: Signature-based IDS, which identifies 
malicious activities through known signatures stored in a 
database, and anomaly-based IDS, which discerns atypical 
behavior within the network [5]. Signature-based IDS have 
been deemed ineffective in contemporary contexts for two 
fundamental reasons. Firstly, they necessitate prior 
knowledge of attacks, rendering them incapable of 
recognizing novel threats [6]. Secondly, the upkeep of attack 
signatures within databases and the execution of 
computations on IoT systems possessing limited storage and 
processing capacity proves to be inefficient [7]. Conversely, 

anomaly-based IDS excel in identifying unusual behaviors, 
thereby demonstrating proficiency in detecting novel attacks 
that deviate from established patterns [8]. With the recent 
advancements in Machine Learning (ML) and Deep Learning 
(DL) methodologies, these techniques can be integrated into 
anomaly-based IDS to surmount existing limitations. 
Numerous researchers have formulated ML methodologies 
aimed at minimizing false positive rates and establishing 
precise IDS [9]. Nonetheless, when engaging with BD, ML 
models necessitate extensive training durations for data 
classification. The integration of BD and ML techniques 
within IDS can alleviate challenges concerning computational 
inefficiency while enhancing both detection accuracy and 
speed [10]. 
 This manuscript introduces an Artificial Hummingbird 
Algorithm with Artificial Intelligence-Driven Intrusion 
Detection in Big Data Environment (AHAAI-IDBDE) 
technique. The objective of the AHAAI-IDBDE technique is 
to harness Feature Selection (FS) in conjunction with a 
hyperparameter selection strategy for the purpose of intrusion 
detection. To manage BD effectively, the MapReduce 
framework is employed. In the AHAAI-IDBDE technique, Z-
score normalization is utilized to standardize the input data. 
For the selection of an optimal feature set, the Binary 
Volleyball Premier League (BVPL) algorithm is 
implemented. The AHAAI-IDBDE technique employs a 
Deep Variational Autoencoder (DVAE) model to facilitate 
intrusion detection. The Artificial Hummingbird Algorithm 
(AHA) is utilized in the hyperparameter selection process. 
The efficacy of the AHAAI-IDBDE methodology has been 
empirically evaluated using a benchmark IDS dataset. The 
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principal contributions of this paper are summarized as 
follows: 
 
• Develop an automated AHAAI-IDBDE technique for 

intrusion detection in the big data environment by the use 
of FS with a hyperparameter selection strategy 

• Employ BVPL technique for electing an optimal set of 
features. This approach can enhance the efficiency and 
relevance of the features selected for intrusion detection. 

• Apply DVAE model for detecting intrusions. This 
indicates a utilization of advanced neural network 
architectures for more accurate and sophisticated 
intrusion detection. 

• Utilize AHA for the hyperparameter selection process. 
This suggests an innovative approach to fine-tune the 
parameters of the intrusion detection system. 

 
 
2. Literature  
 
Krishna and Thirumuru [11] introduce an efficient ensemble 
DL-based IDS. The data preprocessing includes transforming 
qualitative data into numeric data employing the One-Hot 
Encoding method. Then, the process of normalization was 
executed and Manta-Ray Foraging Optimization was 
recommended to elect the best feature subsets. Afterwards, 
SMOTE oversampling develops a novel minority instance for 
balancing the processed database. Lastly, CNN–SVM method 
was developed for classifying the types of attacks. 
Mahdavisharif et al. [12] implement a BD-aware DL 
technique to develop a proficient and efficacious IDS model. 
A particular framework of Long Short-Term Memory 
(LSTM) could be created, and the architecture will recognize 
complex networks and extended dependencies among 
received traffic packets. Furthermore, employing BD analytic 
methods should increase the speed of DL methods in this 
study. Pustokhina et al. [13] introduced an innovative DL 
based hyperparameter search (HPS) CNN with BiLSTM 
(CBL) method named HPS-CBL for IDS in BD platform. The 
developed method employs improved-GA (IGA) for 
hyperparameter tuning. 
 Salama and Ragab [14] developed an innovative BC with 
Explainable AI Driven Intrusion Detection for IoT Driven 
Ubiquitous Computing System (BXAI-IDCUCS) technique. 
Moreover, the DNN method was utilized to recognize and 
categorize intrusions. Finally, BC technology must be 
implemented to protect inter-cluster data transmission 
methods. Kumar [15] introduced a Hybrid Meta-heuristic 
Optimization based Subset of FS (HMOFS) with Optimum 
Wavelet KELM (OWKELM) based Classification method 
named HMOFS-OWKELM system. The Hadoop Ecosystem 
was employed for handling BD. The HC notion was 
integrated into the MFO technique. Further, OWEKM 
method was implemented for classification method in which 
the optimum parameter setting in the WKELM was executed 
through the rat swarm optimizer (RSO). 
 Ponmalar and Dhanakoti [16] provided an innovative 
method for increasing the intrusion detection method by 
managing the essential BD difficulties related to various 
categories of heterogeneous security information. In order to 
accomplish the previous objective, the ensemble SVM has 
been incorporated with the Chaos Game Optimization (CGO) 
model. This technique enhances the classification accuracy of 
intrusion and likewise recognizes 9 various kinds of attacks 
existing in the database. Sheeba et al. [17] devise BD 
Analytics with the IoTs based Intrusion Detection utilizing 

Modified Buffalo Optimizer Algorithm with DL (IDMBOA-
DL) method. The Hadoop MapReduce tool was implemented 
to handle BD. The MBOA technique was exploited for 
developing the optimum features by choosing the best group 
of feature subsets. Lastly, the SCA with CAE system should 
be employed for recognizing and categorizing the intrusions 
in the IoT network. 
 
 
3. The Proposed Method 
 
In this manuscript, we focus on design and development of an 
AHAAI-IDBDE approach. The purpose of the AHAAI-
IDBDE technique exploit the FS with hyperparameter 
selection strategy for intrusion detection. Fig. 1 illustrates the 
entire process of AHAAI-IDBDE approach. 
 
3.1. MapReduce 
The Hadoop ecosystem provides platforms to access, store, 
and analyze vast amounts of data efficiently [18]. The 
MapReduce framework is a core component of Hadoop, 
designed for data parallel processing. It operates as a parallel 
processing programming model that simplifies distributed 
computation. A typical MapReduce instance comprises two 
stages, the Mapper and the Reducer. The output of the Mapper 
stage serves as the input for the Reducer stage. In the Mapper 
stage, the extracted data is transformed into key-value pairs, 
which are then passed to the MapReduce framework. The 
Mapper stage's primary function is to process input data by 
extracting specific field values and identifying any values that 
are no longer part of the dataset. This stage generates key-
value pairs by processing documents both sequentially and in 
parallel, as represented in Eq. (1): 
 
𝑀𝑎𝑝!"#$%(𝑘𝑒𝑦&, 𝑣𝑎𝑙𝑢𝑒&) → 	𝑙𝑖𝑠𝑡(𝑘𝑒𝑦', 𝑣𝑎𝑙𝑢𝑒')																	(1) 
 
 In the Reducer stage, the intermediate key-value pairs 
produced by the Mapper are aggregated and processed to 
produce the final output. The Reducer combines all 
intermediate values associated with the same key, resulting in 
the consolidated output, as described in Eq. (2): 
 
𝑅𝑒𝑑𝑢𝑐𝑒_𝑃ℎ𝑎𝑠𝑒(𝑘𝑒𝑦2, 𝑙𝑖𝑠𝑡(𝑣𝑎𝑙𝑢𝑒2)) 	→
	𝑙𝑖𝑠𝑡(𝑘𝑒𝑦_3, 𝑣𝑎𝑙𝑢𝑒_3)      (2) 
 
 After deduction by MapReduce, the huge dataset is small 
and acts as a requirement for further process. 
 
3.2. Z-score normalization 
The AHAAI-IDBDE methodology employs Z-score 
normalization to appropriately scale the input variables. Z-
score normalization, commonly known as standardization, 
constitutes a statistical approach utilized to convert numerical 
data into a standardized metric characterized by a mean of 0 
and a standard deviation (SD) of 1 [19]. In the realm of 
intrusion detection, Z-score normalization guarantees that all 
features within a dataset adhere to a uniform scale, thus 
facilitating precise interpretation and comparison of their 
respective values. This procedure entails subtracting the mean 
of each feature from the corresponding data points and 
subsequently dividing the resultant by the standard deviation. 
The resultant Z-scores signify the extent to which a data point 
deviates from the mean in terms of standard deviations. Z-
score normalization is of particular significance in machine 
learning contexts, encompassing intrusion detection, as it 
promotes efficient model convergence and mitigates the risk 
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of features with larger scales disproportionately affecting 
model performance. 
 

 
Fig. 1. Overall procedure of AHAAI-IDBDE approach 
 
3.3. Feature selection 
For the purpose of determining an optimal set of features, the 
Binary Volleyball Premier League (BVPL) methodology has 
been employed. This innovative approach, originally 
conceptualized by Moghdani and Salimifard [20], draws its 
inspiration from the organizational structure of a volleyball 
league. Within the BVPL paradigm, "active players" are 
indicative of features present in the dataset, whereas "passive 
players" denote alternative features that have the potential to 
enhance the overall performance metrics. The procedure 
comprises multiple phases. Initially, two matrices—
substitution and formation—are assigned values in a 
randomized manner. These matrices correspond to the 
quantity of features and the dimensions of the team, 
respectively. Subsequent phases entail the formulation of a 
schedule for the feature selection procedure and the 
categorization of features into distinct groups predicated on 
their relevance to the designated task. Teams (features) are 
subsequently assessed through four methodologies: 
substitution, knowledge exchange, repositioning, and a 
tactical approach aimed at preserving the functionality of 
high-performing features. The learning phase entails the 
modification of features based on those demonstrating 
superior performance. Ultimately, the technique culminates in 
additional phases aimed at enhancing performance: relegation 
(elimination of less pertinent features), upgrades (integration 
of new features), and season transfers (modifications 
predicated on feature relevance). The BVPL approach is 
executed in a binary format through the selection of an 
appropriate transfer function tailored to each dataset. A cost 
function is utilized to evaluate the quality of the feature set, 

grounded in the accuracy metrics derived from the KNN 
machine learning algorithm, which serves to quantify the 
efficacy of the selected features within classification 
endeavors. 
 

Algorithm 1: BVPL Algorithm 
Input: 𝑡 = 0, parameters, cost function 
Output: mean, and SD of fitness, average of elected 
features, average accuracy 
Initialization 
For n runs = 1 to n runs 
𝑡 = 1; 
While 𝑡 < max(iteration 
Create a league schedule 
For 𝑖 = 1: (𝑁 − 1) 
Best team=Choose best team based on costfunction 
For (all the matches in schedule week table i) 
Execute Competition process among team 𝐴, and 𝐵 
Define losing and winning teams 
Implement distinct approaches for losing and winning 
teams 
Upgrade Best team 
Execute learning stage 
End For 

𝑖 = 𝑖 + 1 
End For 
Execute for promotion and relegation procedure 
Implement season transfer method 

𝑡 = 𝑡 + 1 
End While  
End For 

 
 The fitness function (FF) used in the BVPL system is 
designed to balance the number of selected features (lower 
count) and the classification accuracy (higher accuracy) 
achieved by deploying these selected features. Equation (3) 
represents the FF used to evaluate performance: 
 
𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼𝛾)(𝐷) + 𝛽

|)|
|+|
	      (3) 

 
 Here, γR(D) represents the error rate of the classifier, ∣R∣ 
denotes the cardinality of the selected feature subset, and ∣C∣ 
indicates the total number of features in the dataset. The 
parameters α and β correspond to the influence of 
classification accuracy and subset size, respectively, where α, 
β ∈ [0,1] and β -1−α 
 
3.4. DVAE based classification 
To detect intrusions, the AHAAI-IDBDE technique employs 
the DVAE model, which is a variant of the autoencoder (AE) 
[21]. The primary difference between AE and DVAE lies in 
the hidden representation (z) of the VAE, which is assumed 
to follow a Gaussian distribution parameterized by standard 
deviation (σ) and mean (μ). This distribution is encoded by 
qϕ(z∣x) and decoded by pθ(x∣z). Thus, the loss function for a 
data point 𝑥(-)  in a VAE consists of two terms, as shown in 
Eq. (4): 
 
ℓ𝑉𝐴𝐸S𝑥(-), 𝜃, 𝜙V = 𝐷/0 W𝑞1S𝑧Z𝑥(-)V[𝑝2(𝑧)\ −
𝐸
314𝑧5𝑥(-)6]log𝑝2S𝑥

(-)Z𝑧Va      (4) 

 
 The 1st term in Eq. (4) is KL divergence among the 
estimated posterior W𝑞1S𝑧Z𝑥(-)V\ and the previous 
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distribution S𝑝2(𝑧)V. This divergence processes that near the 
latter is to previous. The 2nd term 
−𝐸

314𝑧5𝑥(-)6]𝑙𝑜𝑔𝑝2S𝑥
(-)Z𝑧Va is reconstruction error (RE) of 

DVAE. This term compels the decoded to engage in the 
learning to recreate the input data. 
 Since it can be challenging to directly sample from 
qϕ(z∣x), a reparameterization trick is employed to handle high 
variance during the Monte Carlo process. Instead of directly 
sampling from the distribution, the reparameterization trick 
generates a sample 𝑧(-) from a standard normal distribution 
using the following equation: 
 
𝑧(-,8) = 𝜇(-) + 𝜎(-) × 𝜖(-,8); 𝜖(-,8) ∼ 𝑁(0, 𝐼),    (5) 
 
 Whereas, 𝜎(-) and 𝜇(-) refers to the SD and mean of the 
Gaussian distribution of individual hidden variable 𝑧(-), 
correspondingly. The values of 𝜇(-) and 𝜎(-) are acquired 
through the encoded by utilizing functions 𝜇(-) = 𝑓&(𝑥- , 𝜙) 
and 𝜎(-) = 𝑓'S𝑥(-), 𝜙V. 
 
3.5. Hyperparameter tuning AHA model  
The hyperparameter selection process is performed using the 
Adaptive Hummingbird Algorithm (AHA), a novel 
metaheuristic method inspired by the natural foraging 
behavior of hummingbirds [22]. The AHA model employs 
three distinct foraging mechanisms: omnidirectional, axial, 
and diagonal flight patterns. The steps involved in the AHA 
process are illustrated in Fig. 2. 
 In the first step, the initial population of N hummingbirds, 
represented by the vector X, is randomly initialized as 
follows: 
 
𝑋9 = 𝑟 × (𝑈 − 𝐿) + 𝐿, 𝑗 = 1,2,… ,𝑁     (6) 
 
 Where 𝑈 and 𝐿 are the limits of each value of 𝑋9 and 𝑟 ∈
[0,1] indicates the random integers. Meanwhile, the visit table 
related to the 𝑋: is shown below: 
 

𝑉𝑇9- = u0					𝑖𝑓	𝑗 ≠ 𝑖
𝑛𝑢𝑙𝑙			𝑗 = 𝑖 		𝑖, 𝑗 = 1,… ,𝑁     (7) 

 
 If 𝑖 = 𝑗, then 𝑉𝑇9- = 𝑛𝑢𝑙𝑙 indicates the amount of food 
hummingbirds found at a certain position. The 𝑗;" 
hummingbirds for visiting the 𝑖;" food source is represented 
as 𝑉𝑇9- = 0. 
 
Guided foraging 
During the foraging process, the hummingbird discovers the 
food source with the highest visiting rate and selects the agent 
that has the maximum nectar-refilling rate from the 
population X, representing the best agent for guided foraging. 
The three types of flight behaviors involved in this process are 
axial, omnidirectional, and diagonal. The description of axial 
flight (𝐷- , 𝑖 = 1,… , 𝑑) is shown below: 
 
𝐷- = x1 𝑖𝑓	𝑖 = 𝑅

0 𝑒𝑙𝑠𝑒
      (8) 

 
 Where R∈[1,d] represents a randomly chosen dimension. 
 Furthermore, the diagonal flight is represented as follows: 
 

 
𝐷- = x1	𝑖𝑓	𝑖 = 𝑃(𝑗), 𝑗 ∈ [1, 𝑘], 𝑃 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚	(𝑘)

0																								𝑒𝑙𝑠𝑒
   (9) 

 
 Where 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚 (𝑘) ∈ [1, 𝑘] denotes the random 
integer and 𝑘 ∈ [2, ⌈𝑟&(𝑑 − 2)⌉ + 1]. Moreover, the formula 
of omnidirectional flight is represented as: 
 
𝐷- = 1, 𝑖 = 1,… , 𝑑     (10) 
 
 Where 𝑅 ∈ [1, 𝑑] shows the random number and 𝑟& ∈
[0,1] refers to random integers. Moreover, based on guided 
foraging, the solution is updated using Eq. (11): 
 
𝑉-(𝑡 + 1) = 𝑋-(𝑡) + 𝑎 × 𝐷 × S𝑋-(𝑡) − 𝑋-(𝑡)V  (11) 
 
 Where the 𝑖;" values at 𝑡;" iteration of 𝑋 is denoted as 
𝑋-(𝑡). 𝑎 ∈ 𝑁(𝑂, 1) represents random value. The desired 
solution explored by 𝑋- is denoted as 𝑋-(𝑡): 
 

𝑋-(𝑡 + 1) = }𝑋-
(𝑡), 𝑖𝑓	𝑓S𝑋-(𝑡)V ≤ 𝑓S𝑉-(𝑡 + 1)V

𝑉-(𝑡 + 1),						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
	 (12) 

 
 Where 𝑓 indicates the fitness value. 
 
Territorial foraging 
A hummingbird searches for food instead of visiting other 
flowers, after consuming nectar from the flower. Thus, the 
bird makes a rapid migration towards the region closer to its 
territory where the new food source might be placed rather 
than the older one. The local foraging of hummingbirds and a 
potential solution can be expressed as follows: 
 
𝑉-(𝑡 + 1) = 𝑏 × 𝐷 × 𝑋-(𝑡) + 𝑋-(𝑡), 𝑏 ∈ 𝑁(0, 1) (13) 
 
Migration foraging 
The hummingbird migrates towards the new spot away from 
its preferred feeding position and is in need of food. The 
hummingbird step migrates to a location with one of the worst 
rates of nectar refill chosen at random from the search area 
when the generation number surpasses the predefined 
coefficient of migration. Thus, VT is improved as this 
hummingbird shifts from using the older to the newer 
solutions. The hummingbird migrates to a new nectar source 
established randomly from the source with a low nectar 
replenishment rate. 
 
𝑋<(𝑡 + 1) = 𝑟 × (𝑈 − 𝐿) + 𝐿.	   (14) 
 
 Where 𝑋< indicates the worst fitness value. The AHA 
technique derives an FF to realize better classifier result. It 
explains a positive integer to refer the good result of candidate 
outcomes. During this case, the decreasing the classifier rate 
of errors have been supposed to be FF, as demonstrated in Eq. 
(15). 
 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥-) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥-) =
=>.>@	B-$CD#$$-@-%E	-F$;#FC%$	

G>;#D	F>.>@	-F$;#FC%$	
∗ 100   (15) 

 
 Where xi represents the ith candidate solution, 
 
 
4. Result Analysis 
 
In this section, the simulation outcome of the AHAAI-IDBDE 
methodology has been tested utilizing the IDS database [23], 
encompassing 125973 instances as illustrated in Table 1. 
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Table 1. Details on database 

Attack Type No. of Instances 
Dos 45927 
R2l 995 
Probe 11656 
U2r 52 
Normal 67343 
Total No. of Instances 125973 

 
 Table 2 and Fig. 3 illustrate the feature selection (FS) 
analysis of the AHAAI-IDBDE algorithm in terms of Best 
Cost (BC) and the selected features. The results indicate that 
the BSO-FS, WOA-FS, and GA-FS methods exhibit 
suboptimal performance, reflected by an increased BC. In 
contrast, the QBSO-FS model achieves a noteworthy BC of 
0.000665. However, the AHAAI-IDBDE technique 
demonstrates superior performance, achieving a BC of 
0.000427, which represents the best result among the 
evaluated methods. 
 

 
Fig. 2. Steps involved in AHA 
 
Table 2. FS outcome of AHAAI-IDBDE technique under BC 

Methods Best 
Cost Selected Features 

AHAAI-
IDBDE 

0.000
427 1,3,4,6,9,11,15,17,20,22,30,38 

QBSO-FS 0.000
665 2,3,5,6,7,8,9,11,14,16,18,32,36,39 

BSO-FS 0.000
673 

2,4,5,6,7,9,11,13,15,16,17,19,20,21,23,38,3
8,40 

WOA-FS 0.000
840 

3,5,8,13,18,20,21,22,23,25,26,28,30,32,33,3
4,36,38,40 

GA-FS 0.001
091 

21,7,27,32,25,34,1,24,40,28,26,10,5,33,14,1
6,12,36,23,30,38,22,15 

 
Fig. 4 represents the classifier performances of the 

AHAAI-IDBDE algorithm on test database. Figs. 4a-4b 
signifies the confusion matrices achieved by the AHAAI-
IDBDE method on 70:30 of TRPH/TSPH. The simulation 
value referred that the AHAAI-IDBDE technique has 
detection and classified all 5 classes. Then, Fig. 4c exposes 
the PR study of the AHAAI-IDBDE methodology. The 
experimental value inferred that the AHAAI-IDBDE 
approach has gained better value of PR at 5 class. However, 
Fig. 4d exposes the ROC outcome of the AHAAI-IDBDE 
technique. The experimental value described that the 
AHAAI-IDBDE methodology has managed to capable 
performances with better values of ROC at 5 class. 

 

 
Fig. 3. FS outcome of AHAAI-IDBDE technique under BC 
 

 
Fig. 4. Classifier outcome of (a-b) Confusion matrices and (c-d) PR and 
ROC curves 
 
 The IDS outcome of the AHAAI-IDBDE technique are 
displayed in Table 3 and Fig. 5. The results emphasized that 
the AHAAI-IDBDE methodology recognized five classes. 
With 70% of TRPH, the AHAAI-IDBDE method provides 
average 𝑎𝑐𝑐𝑢H of 99.79%, 𝑠𝑒𝑛𝑠H of 99.21%, 𝑠𝑝𝑒𝑐H of 
99.84%, 𝐹$C>I% of 96.94%, and MCC of 96.83%. Additionally, 
with 30% of TSPH, the AHAAI-IDBDE system gains average 
𝑎𝑐𝑐𝑢H of 99.80%, 𝑠𝑒𝑛𝑠H of 99.34%, 𝑠𝑝𝑒𝑐H of 99.85%, 𝐹$C>I% 
of 96.12%, and MCC of 96.10%.  
 The 𝑎𝑐𝑐𝑢H curves for TRaining (TR) and VaLidation 
(VL) exposed in Fig. 6 for the AHAAI-IDBDE methodology 
suggest appreciated perceptions into its solution at distinct 
epochs. Specifically, there is a constant enhancement in both 
TR and TS 𝑎𝑐𝑐𝑢H with enhanced epochs, implying the 
model's ability in learning and identifying designs in the both 
datasets. The increasing trend in TS 𝑎𝑐𝑐𝑢H emphasizes the 
model's efficiency to the TR data and its capability to create 
correct estimates on unobserved data, importance robust 
generalization abilities. 
 
Table 3. IDS outcome of AHAAI-IDBDE technique on 70:30 
of TRPH/TSPH 

Classes  𝑨𝒄𝒄𝒖𝒚 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑭𝑺𝒄𝒐𝒓𝒆 MCC 
TRPH (70%) 
Dos 99.66 99.52 99.73 99.53 99.26 
R2l 99.91 97.84 99.93 94.58 94.58 
Probe 99.78 99.20 99.84 98.81 98.69 
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U2r 99.99 100.00 99.99 92.13 92.42 
Normal 99.60 99.51 99.71 99.63 99.21 
Average 99.79 99.21 99.84 96.94 96.83 
TSPH (30%) 
Dos 99.63 99.53 99.69 99.49 99.21 
R2l 99.91 98.67 99.92 94.57 94.61 
Probe 99.78 98.96 99.87 98.85 98.73 
U2r 99.99 100.00 99.99 88.00 88.64 
Normal 99.66 99.57 99.77 99.68 99.32 
Average 99.80 99.34 99.85 96.12 96.10 

 
 

 
Fig. 5. Average of AHAAI-IDBDE technique on 70:30 of TRPH/TSPH 
 

 
Fig. 6. 𝐴𝑐𝑐𝑢' curve of the AHAAI-IDBDE technique  
 
 Fig. 7 offers a wide-ranging analysis of the TR and TS 
loss values for the AHAAI-IDBDE system through several 
epochs. The TR loss constantly diminishes as the model 
upgrades its weights to decrease classifier errors on either TR 
or TS data. The loss curves evidently expose the model's 
position with TR data, underscoring its capability to capture 
outlines efficiently in both TR and TS data. Notable is the 
constant refinement of parameters in the AHAAI-IDBDE 
methodology, aimed at decreasing discrepancies among 
calculations and actual TR labels. 
 Table 4 demonstrates a brief comparative outcome of the 
AHAAI-IDBDE technique in terms of distinct metrics [24]. 
In Fig. 8, the AHAAI-IDBDE algorithm is compared with 
existing systems in terms of 𝑠𝑒𝑛𝑠H and 𝑠𝑝𝑒𝑐H. Based on 
𝑠𝑒𝑛𝑠H, the AHAAI-IDBDE method reaches higher 𝑠𝑒𝑛𝑠H of 
99.34% while the QBSO-FDNN, RBFNetwork, LR, RF, RT, 
and DT methods provide decreased 𝑠𝑒𝑛𝑠H of 98.89%, 
93.40%, 97.26%, 92.39%, 95.68%, and 95.68%, 
correspondingly. Eventually, based on 𝑠𝑝𝑒𝑐H, the AHAAI-
IDBDE algorithm obtains maximum 𝑠𝑝𝑒𝑐H of 99.85% while 
the QBSO-FDNN, RBFNetwork, LR, RF, RT, and DT 
methodologies provide lesser 𝑠𝑝𝑒𝑐H of 99.42%, 92.38%, 
96.92%, 93.83%, 95.39%, and 95.37%, correspondingly. 

 
Fig. 7. Loss curve of the AHAAI-IDBDE technique  
 
Table 4. Comparative analysis of AHAAI-IDBDE technique 
with other systems 

Methods 𝑺𝒆𝒏𝒔𝒚 𝑺𝒑𝒆𝒄𝒚 𝑨𝒄𝒄𝒖𝒚 
AHAAI-IDBDE 99.34 99.85 99.80 
QBSO-FDNN 98.89 99.42 98.90 
RBFNetwork 93.40 92.38 92.93 
Logistic Regression 97.26 96.92 97.10 
Random Forest 92.39 93.83 93.04 
Random Tree 95.68 95.39 95.55 
Decision Tree (J48) 95.68 95.37 95.53 

 
 In Fig. 9, the AHAAI-IDBDE technique is compared with 
existing approaches in terms of 𝑎𝑐𝑐𝑢H. The results imply that 
the AHAAI-IDBDE technique reaches enhanced 𝑎𝑐𝑐𝑢H of 
99.80% while the QBSO-FDNN, RBFNetwork, LR, RF, RT, 
and DT models provide decreased 𝑎𝑐𝑐𝑢H of 98.90%, 92.93%, 
97.10%, 93.04%, 95.55%, and 95.53%, respectively. 
 

 
Fig. 8. 𝑆𝑒𝑛𝑠' and 𝑠𝑝𝑒𝑐' analysis of AHAAI-IDBDE methodology with 
other models 
 
 Therefore, the AHAAI-IDBDE methodology has been 
applied for accurate classification of intrusions in the BD 
environment. 

 
Fig. 9. 𝐴𝑐𝑐𝑢' outcome of AHAAI-IDBDE methodology with other 
models 
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5. Conclusion  
 
In this manuscript, we present the design and development of 
the AHAAI-IDBDE approach for intrusion detection. The 
AHAAI-IDBDE technique combines feature selection (FS) 
with a hyperparameter selection strategy to enhance the 
effectiveness of intrusion detection systems (IDS). For 
efficient handling of big data (BD), the MapReduce 
framework is employed. Z-score normalization is utilized to 
scale the input data, ensuring that all features contribute 
equally to the detection process. To select the optimal set of 
features, the BVPL (Binary Variable Processing Layer) 
method is employed. Intrusion detection is carried out using 
the DVAE (Denoising Variational Autoencoder) model, 
which has demonstrated its capability in detecting anomalies 
in complex network traffic. The AHA (Adaptive 

Hyperparameter Algorithm) is applied for hyperparameter 
tuning, optimizing the performance of the model. The 
effectiveness of the AHAAI-IDBDE approach is evaluated 
through extensive experiments using benchmark IDS 
datasets. Comparative analysis with existing algorithms 
highlights the superiority of the AHAAI-IDBDE technique, 
demonstrating improved accuracy and efficiency in detecting 
intrusions. The results validate the potential of AHAAI-
IDBDE for real-time, large-scale intrusion detection 
applications. 
 
 
This is an Open Access article distributed under the terms of 
the Creative Commons Attribution License.  
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