

Journal of Engineering Science and Technology Review 6 (5) (2013) 129 - 136

Research Article

On Analysis of a Chord-based Traffic Model for Web Service Discovery in Distributed
Environment

Cong Gao*, Jianfeng Ma and Xiaohong Jiang

Shaanxi Key Laboratory of Network and System Security, School of Computer, Xidian University, Xi’an, 710071- China

Received 6 October 2013; Accepted 28 December 2013

Abstract

Recent years have witnessed a thriving development of web service all over the world. Almost every imaginable service
in our everyday life becomes available online. With the increasing number of web services, a lot of works has been done
with regard to the issue of web service discovery. The prevailing service discovery architectures are centralized
architecture and distributed architecture. Since the former is considered to be weak at robustness and scalability, a
significant research attention is focused on the latter one. However, most of the existing works do not cover the modeling
of traffic. To address this problem, we in this paper present a Chord-based traffic model for web service discovery in
distributed environment. The proposed model analyzes the node behavior through the operation of five queues. The
traffic of a node is regulated by a traffic management module. Different traffic management policies are analyzed for the
purpose of improving the availability and latency of service discovery in a Chord network. In order to evaluate our model,
we conduct extensive experiments and make an analysis of the simulation results.

 Keywords: Discovery, Web Service, Service Information, Traffic Modeling, Peer-to-peer Networks
 __

1. Introduction

With the increasing deployment of web service on the
Internet, the issue of web service discovery becomes a
widely-recognized topic in the research area [1], [2] and [3].
Generally, there are two architectures for web service
discovery: centralized architecture and distributed
architecture. The centralized architecture [4] stores the
information of web service in a centralized manner. Two
popular centralized mechanisms are registry and index. The
web service information stored in a registry is authoritatively
controlled by the registry owner. A famous example of
registry is UDDI [5]. Due to several important technical
drawbacks, the UDDI is considered to be imperfect; and a
lot of improvements have been made [6], [7] and [8]. An
index collects the web service information from the Internet.
Unlike a registry, an index does not control what
information is provided to the users. A well-known example
of the index is the search results given by a search engine.
Due to some intrinsic shortcomings of a centralized
architecture, such as bottle neck and robustness, the
researchers have done many works for the distributed
architecture, such as [9], [10], [11] and [12]. All these works
are based on a P2P network. The advantages of P2P network
accord the above contributions scalability and reliability.
However, the modeling and analysis of traffic is not
involved.
 In this article, we address the issue of web service
discovery by introducing a Chord-based traffic model. In the
proposed model, a node contains five queues: incoming

queue, answer queue, forward queue, query queue and
outgoing queue. For each node, there is a traffic
management module which regulates the dequeue operations
of the answer queue, the forward queue and the query queue.
For the traffic management module, it is convenient to
conduct a policy making based on the percentages of
processing ability which are allocated to deal with the above
three queues. In a word, our model provides a way to
optimize the availability and latency of service discovery in
a Chord network by modeling the node behavior.
 The reminder of this article is organized as follows.
Section 2 provides a brief review of the Chord protocol.
Section 3 details our traffic model and the traffic
management policy. In Section 4, we evaluate the proposed
model by simulation and present an analysis of the
simulation results. Finally, we make conclusions and
highlight the future work in Section 5.

2. Review of Chord

In computer network, a distributed environment is often
implemented as a peer-to-peer (P2P) network. According to
the connection mode of the nodes and the way of resource
allocation, P2P networks are categorized as unstructured and
structured (or a hybrid type combing the two) [13]. In
unstructured peer-to-peer networks, there is no specific
structure for the nodes. All connections among the nodes are
randomly formed [14]. There are many famous protocols for
unstructured P2P networks, such as Gnutella [15], Gossip
[16] and Kazaa [17]. Since there is no structure in

 * E-mail address: glidergao@gmail.com
ISSN: 1791-2377 © 2013 Kavala Institute of Technology. All rights reserved.

Jestr

JOURNAL OF
Engineering Science
and Technology Review

 www.jestr.org

Cong Gao, Jianfeng Ma and Xiaohong Jiang/Journal of Engineering Science and Technology Review 6 (5) (2013) 129 -136

 130

unstructured P2P networks, a high robustness could be
achieved and the effect of single point failure is low.
However, the flooding problem which could cause a large
scale of congestion for the whole network is a major
drawback of unstructured P2P networks. In a structured P2P
network, nodes are regulated by a structured model. The
most notable model is the distributed hash table (DHT) [18].
The nodes in a DHT-based P2P network could issue a query
using a hash table. Literatures have proposed plentiful
protocols for structured P2P networks, such as Pastry [19],
Chord [20], Tapestry [21] and Kademlia [22].
 In particular, our traffic model is based on the Chord
protocol. The basic idea of Chord is as follows. The
information of a resource is stored on a specific node in the
form of key-value pair. A query is supposed to be answered
by the node which is responsible for the key contained in the
query; and a reply which contains the corresponding value of
the key will be sent by the answering node. All nodes and
resources are uniquely mapped to a 2m identifier space
using consistent hashing. Suppose there is a consistent hash
function ()cHash str whose return value is always an m-bit
binary string irrespective of what the independent variable
str is. Thus, the lengths of the id for a node and the key for
a resource are both m-bit. Conventionally, the id of a node is
obtained by ()cHash ip , where ip is the IP address of the
node. The key of a resource is obtained by ()cHash value ,
where value is the resource name or location. For example,
the value of a web service may be the corresponding URL
of the web service. The values of a node id and a resource
key are both in the range of [0,2 1]m − .
 The structure of a Chord network could be logically
interpreted by an abstract model which is called the Chord
ring. For a Chord ring where the identifier space is 2m ,
there are 2m uniformly distributed positions on the Chord
ring which are labeled from 0 to 2 1m − in the clockwise
direction. Nodes are located on the Chord ring according to
their ids. Each node on the Chord ring has a successor and a
predecessor. By the successor of a node we mean the next
node on the Chord ring in the clockwise direction; while the
predecessor of a node is the next node in the counter-
clockwise direction. Keys are assigned to nodes according to
the rules given below. Considering the existing nodes on the
Chord ring, a key is assigned to the first node whose id is
greater than or equal to the key. The lookup operation of a
key is implemented based on a component which is called
finger table. For a node n in the Chord ring where the
identifier space is 2m , the detailed definition of its finger
table is given in [20]. On average, a query will be forwarded
1 log
2

n times before reaching its destination [23]; and this

is a remarkable performance.
 Moreover, the Chord protocol is resilient to node failure
and could handle node join smoothly. Since this paper is not
focused on explaining the operation of Chord, we omit the
details such as key lookup, stabilization of node join/failure
and load balance. In order to facilitate the presentation of our
model. We briefly make the following summary for the
operation of key lookup. A query travels on the Chord ring
in the clockwise direction. If an intermediate node receives a
query which it is unable to answer, it will forward the query
according to the specification of the Chord protocol. When
the query arrives at a node which is able to answer it, the

node will send a reply designated to the corresponding node
which issued the query.

3. Node Model and Traffic Management Policy

3.1 Node Model
In this section, the node behavior is modeled in order to
facilitate the analysis of the traffic in a Chord network. The
fundamental concept we employed is that the node behavior
is driven by discrete events. For simplicity, we only consider
two types of messages in the Chord network: a query
message and a reply message. We set up five message
queues in a node: query queue, incoming queue, answer
queue, forward queue and outgoing queue. All these queues
possess the classic property of First-In-First-Out (FIFO). In
our node model, there are two interfaces that node n
interacts with other nodes in the Chord network: the
incoming queue and the outgoing queue. Considering a node
n in the Chord network, we give the definitions of the
above five queues and draw a flow chart of messages in Fig.
1.
 Definition 1. Incoming Queue nIQ . All messages which
are about to flowing into node n are enqueued in the
incoming queue. It is the only interface through which other
nodes in the Chord network could interact with node n . We
denote the total number of incoming messages by nmi .
Suppose there are nqi query messages and nri reply
messages. Trivially, we have n n nmi qi ri= + .
 Definition 2. Outgoing Queue nOQ . All messages
which are about to flowing out node n are enqueued in the
outgoing queue. It is the only interface through which node
n could interact with other nodes in the Chord network. We
denote the total number of outgoing messages by nmo .
Suppose there are nqo query messages and nro reply
messages. Trivially, we have n n nmo qo ro= + .
 Definition 3. Query Queue nQQ . The query messages
issued by node n are enqueued in the query queue. The
number of query messages issued by node n is denoted by
nq .

 Definition 4. Answer Queue nAQ . Among the incoming
query messages, node n might be able to answer some of
them. We denote the number of these messages by nqr ,
where 0 n nqr qi≤ ≤ . And these query messages are
enqueued in the answer queue.
 Definition 5. Forward Queue nFQ . The portion of the
incoming query messages which node n is unable to answer
is enqueued in the forward queue. We denote the number of
these messages by nqf , where 0 n nqf qi≤ ≤ . Trivially, we
have n n nqi qr qf= + . In addition, the portion of the
incoming reply messages which are not designated to node
n is also enqueued in the forward queue. We denote the
number of these reply messages by nrf , where
0 n nrf ri≤ ≤ . Suppose the number of reply messages which
are designated to node n is denoted by nrs . Then, we have

n n nri rf rs= + .

Cong Gao, Jianfeng Ma and Xiaohong Jiang/Journal of Engineering Science and Technology Review 6 (5) (2013) 129 -136

 131

Fig. 1. Flow chart of messages

3.2 Traffic Management Policy
In order to facilitate the presentation of our model, we
formulate the processing ability of node n as

n n

n
mi mo

pa
time period

+
= .

For an individual node n , the value of npa is constant. In
case of a severe denial of service (DoS) attack, the
processing ability of node n might be exhausted by
incoming messages, then there are no effective outgoing
messages, namely 0nmo = . However, we in this paper
assume that the values of nmi and nmo are both in normal
range. Furthermore, we assume that node n always has
sufficient processing ability to deal with the incoming
messages. Thus, our traffic model is focused on the analysis
of processing ability which deals with outgoing messages.
We denote this part of processing ability by npoa and
suppose the value of npoa is constant in each time step.
 Considering three queues nQQ , nAQ and nFQ , in
each time step, the number of messages dequeued from the
above three queues are denoted by nqq , naq and nfq ,
respectively. And the sum of the three numbers could not
exceed the value of npoa , namely

n n n nqq aq fq pao+ + ≤ .

Since all the messages dequeued from nQQ , nAQ and

nFQ are supposed to enqueue in nOQ , it is necessary that
there is a traffic management module in node n . In order to
maximize the utilization of the processing ability npoa , the
traffic management module should dynamically allocate the
processing ability to meet different dequeue demands of the
three queues. More importantly, the priority of dequeue
operations of the three queues should also be considered for
the purpose of improving the performance of the Chord
network. In short, the essential function of the traffic
management is to regulate the enqueue operation of nOQ .
 For an incoming query message q which is dequeued
from nIQ , node n checks its own database to determine

whether it could be answered. If node n is able to answer it,
the query message is enqueued in nAQ . It is supposed that
when the query message q is dequeued from nAQ , the
corresponding reply message r will be constructed and
enqueued in nOQ . If node n is unable to answer the query
message q , node n should forward it to another node in the
Chord network according to the specification of the Chord
protocol. That is to say, the query message q is enqueued in

nFQ . It is supposed that when the query message q is
dequeued from nFQ , it will be enqueued in nOQ .
Similarly, for a query message q which is issued by node
n , it is supposed that the query message q will be
enqueued in nOQ when it is dequeued from nQQ .
 For an incoming reply message r which is dequeued
from nIQ , node n checks whether it is designated to itself.
If the reply message r is designated to node n , it is handed
over to the query generator module for the purpose of
resolving the corresponding query message generated
previously. Otherwise, node n should forward it to another
node in the Chord network according to the specification of
the Chord protocol. That is to say, the reply message r is
enqueued in nFQ . It is supposed that when the reply
message r is dequeued from nFQ , it will be enqueued in

nOQ .
 As mentioned above, all the query messages and reply
messages dequeued from nQQ , nAQ and nFQ are
supposed to enqueue in nOQ . We normalize the total
processing ability npoa which deals with nOQ by one. The
percentages of processing ability allocated for nQQ , nAQ
and nFQ are denoted by nQ , nA and nF , respectively.
Then, we have

1n n nQ A F+ + = ,

where 0nQ ≥ , 0nA ≥ and 0nF ≥ . In order to analyze the
performance of the Chord network, we choose two primary
metrics availability and latency. Specifically, they are
defined as follows.

Cong Gao, Jianfeng Ma and Xiaohong Jiang/Journal of Engineering Science and Technology Review 6 (5) (2013) 129 -136

 132

 Definition 6. By the availability of node n we mean the
answer rate of the query messages issued by node n . We
denote the availability of node n by nav . Note that the term
answer indicates that for a query message issued by node n ,
the corresponding reply message is received by node n . The
availability of the network is given by the average
availability of all nodes in the network; and it is denoted by

nAV .
 Definition 7. By the latency of a reply message
designated to node n we mean the time steps between the
time when the corresponding query message is sent by node
n and the time when the reply message is received by node
n . We denote the latency of a reply message r by rla . If
node n dose not receive the corresponding reply message of
a query message, the latency is considered to be infinite.
Thus, we do not take it into account. The latency of the
network is given by the average latency of all reply
messages in the network; and it is denoted by nLA .
 Based on the definitions of availability and latency, we
analyze how they are influenced by the three percentage
parameters mentioned above. Given a time period [,]a bt t ,

where b at t> , let us consider a query message q which is
issued by node n . For all the queues involved, we assume
that there are no enqueue/dequeue operations of other
messages except for the query message q and its
corresponding reply message r .
 As illustrated in Fig. 2, the query message q is
answered by node m , and node k is the only intermediate
node between node n and node m . Briefly speaking, if

11b at t≥ + , the corresponding reply message r of the
query message q will eventually be received by node n . In
this case, the current availability of node n is 100%nav = ;
and the latency of the reply message r is 11rla = . When

11b at t< + , node n will not receive the reply message r .
In this case, the current availability of node n is 0%nav = .
Since the reply message r is not received by node n , there
is no value of the latency.

Fig. 2. Sequence chart of the query and answer process

 There are three percentage parameters in Fig. 2: nQ ,

kF , and mA . Suppose 0nQ = at 1at + , for the query
message q , the dequeue operation of nQQ and the
subsequent enqueue operation of nOQ become unable to
execute. The two operations are postponed until 0nQ > .
This introduces an extra delay, and we denote it by 1dt .
Similarly, when 0kF = at 4at + , 0mA = at 7at + and

0kF = at 10at + , we denote the extra delays by 2dt , 3dt
and 4dt , respectively. If 1 2 3 411b a d d d dt t t t t t≥ + + + + + ,
the reply message r will be received by node n . Then, the
latency of r is 1 2 3 411r d d d dla t t t t= + + + + .
 Suppose there are h intermediate nodes between the
querying node n and the answering node m , they are
denoted by set 1 2{ , , , }hk k kL . Before a query message q
arrives at the answering node m , there exist 1h + possible
points which could introduce an extra delay to the query

message. We denote them by the node set

1 2{ , , , , }hn k k kL .For the querying node n , the value of

nQ determines whether the sending of q is postponed. We
denote the possible delay of q introduced by nQ by dnt ,
then the actual delay of q at the querying node n could be
computed as

(0)?0 :n n dnt Q t= > .

 For an intermediate node ik which forwards q , the value of

ikF determines whether the forwarding of q is postponed.

We denote the possible delay of q introduced by ikF by

idkt , then the actual delay of q at the intermediate

forwarding node ik could be calculated as

(0)?0 :
i i ik k dkt F t= > .

Cong Gao, Jianfeng Ma and Xiaohong Jiang/Journal of Engineering Science and Technology Review 6 (5) (2013) 129 -136

 133

Likewise, before the reply message r arrives at the querying
node n , there also exist 1h + possible points which could
introduce an extra delay to the reply message r . We denote
them by the node set 1 2{ , , , , }hm k k kL . For the answering
node m , the value of mA determines whether the sending
of r is postponed. We denote the possible delay of r
introduced by mA by dmt , then the actual delay of r at the
answering node m could be computed as

(0)?0 :m m dmt A t= > .

 For an intermediate node ik which forwards r , the value of

ikF ʹ′ determines whether the forwarding of r is postponed.

We denote the possible delay of r introduced by ikF ʹ′ by

idktʹ′ , then the actual delay of r at the intermediate

forwarding node ik could be calculated as

(0)?0 :
i i ik k dkt F tʹ′ ʹ′ ʹ′= > .

 Hence, according to the definition of latency, the latency
of a reply message r could be computed as

1
()
i i

h

r n k k m
i

la t t t t
=

ʹ′= + + +∑ .

 Suppose there are g query messages sent by node n
during the time period [,]a bt t . We denote them by the set

1 2{ , , , }gq q qL . For these g query messages, node n

received g ʹ′ corresponding reply messages during the time
period [,]a bt t . We denote the received reply messages by

the set 1 2{ , , , }gr r r ʹ′L , where g gʹ′ ≤ . Then, the availability
of node n could be calculated as follows:

1
(()?1: 0)

i

g

a r b
i

n

t la t
av

g

ʹ′

=

+ ≤

=
∑ .

 Since the processing ability which deals with outgoing
messages is limited, the traffic management module should
coordinates the values of nQ , nA and nF for the purpose
of improving availability and latency. In addition, the
priority of dequeue operations of nQQ , nAQ and nFQ
should also be considered for the same reason. In general,
for a Chord network, a significant amount of traffic volume
is playing the relay function. Thus, we hold that nF is the
largest one. A small nQ may cause a backlog in nQQ , then
the latency of the network increases and the availability of
node n decreases consequently. A small nA may lead to a
backlog in nAQ , then the availability of other nodes
decreases and the latency of the network increases as well.
In order to make a compromise, we hold that the values of

nQ and nA are equal.

 Moreover, different priority schemes are designed based
on the above view. Let us take n n nF A Q> > for example,
when nFQ is not empty and the nF processing ability for

nFQ is used up, the traffic management module of node n
will try to expropriate the processing ability for nQQ ,
regardless of whether nQQ is empty. In case the nQ
processing ability for nQQ is also used up, the traffic
management module of node n will try to expropriate the
processing ability for nAQ , regardless of whether nAQ is
empty. Similarly, when nAQ is not empty and the nA
processing ability for nAQ is used up, the traffic
management module of node n will try to expropriate the
processing ability for nQQ , regardless of whether nQQ is
empty. When both nF and nA are used up, since the
priority of nF is higher than that of nA , as long as the
traffic management module keeps expropriating the process
ability for nQQ to meet the demand of nFQ , the demand of

nAQ is deferred. An extreme case is that all the processing
ability for nAQ and nQQ is expropriated for the purpose of
dealing with nFQ . In this case, node n only forwards the
query messages and reply messages it received; and does not
issue query messages or send its own reply messages. Table
I shows the total six combinations of priority for the three
percentage parameters.

Table I. Priority Schemes

 Priority

1P n n nQ A F> >

2P n n nQ F A> >

3P n n nA Q F> >

4P n n nA F Q> >

5P n n nF Q A> >

6P n n nF A Q> >

4. Simulation and Analysis

4.1 Experimental Environment
In order to evaluate our traffic model, we develop a Chord-
based simulation system to simulate the environment of web
service discovery. In communication and computer network
research, there are many prevailing network simulators.
Examples of notable network simulator are NS-2 [24], NS-3
[25], OPNET [26], OMNeT++ [27] and NetSim [28]. To our
best knowledge, OMNeT++ is the most appropriate modular
architecture to simulate a P2P network. Hence, we choose
OMNeT++ as the base platform to implement our system.
All simulation results are obtained on HP with Inter Core2
Q9550 2.83GHz, 4GB RAM with Debian 2.6.32-48squeeze1
(Linux version is 2.6.32-5-686) and gcc 4.3.5 (Debian 4.3.5-
4).

4.2 Simulation Parameters
In our system, the identifier space of the Chord network is

102 2 1024m = = . We use the consistent hash function
SHA-1 [29] to calculate node ids and keys of web services.

Cong Gao, Jianfeng Ma and Xiaohong Jiang/Journal of Engineering Science and Technology Review 6 (5) (2013) 129 -136

 134

A node id is obtained through hashing its IP address. We
generate 20 nodes which are randomly located on the Chord
ring. The information of web services are extracted from the
QWS Dataset 2.0 [30] which contains 2507 real web
services on the Internet. For simplicity, we randomly select
600 web service records from the dataset. The key of a web
service is obtained through hashing the URL of the web

service. The 600 keys of the web services are assigned to the
20 nodes according to the specification of the Chord
protocol; and this process is beyond the scope of this paper.
The ids of the 20 nodes and the numbers of web service
records for which each node takes responsibility are shown
in Table II.

Table 2. Information of the 20 Nodes

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Id 17 32 85 123 214 496 566 594 595 630 641 645 677 747 788 865 884 913 951 1006

Record 20 10 28 18 42 170 42 14 0 30 4 2 14 40 18 44 26 22 24 32

 For node in and its predecessor jn on the Chord ring, if

the ids of node in and node jn are the smallest one and the
largest one of the existing nodes respectively, the distance
between in and jn is computed as

2 . .m
ij j idis n id n id= − + .

Otherwise, we calculate the distance between them by

. .ij i jdis n id n id= − .

 As shown in Table II, the distance between node 6 and
its predecessor node 5 on the Chord ring is 65 282dis = ,
and this value is much larger than that of other nodes
between their corresponding predecessors. Consequently, the
number of web service records for which node 6 takes
responsibility is also larger than that of other nodes. In
specific, we define the responsibility ratio nRR as the ratio
of the number of web service records for which node in
takes responsibility and the distance between in and its

predecessor jn ; and it is calculated as

.i
n

ij

n records
RR

dis
= .

 As depicted in Fig. 3, the responsibility ratios of the 20
nodes are marked as blue crosses. The linear regression
equation of them is drawn in red. Most of the nodes possess
a responsibility ratio which is within the range of [0.4,0.8] ,
except for node 9, 10, 11 and 17. The responsibility ratio of
node 11 is close to 0.4. For node 8 and node 9 whose ids are
594 and 595 respectively, since node 9 is too close to its
predecessor node 8, node 9 takes no responsibility for the
web service records in our case.

4.3 Numerical Results and Analysis
For the evaluation of our traffic management model, we
employ an empirical baseline setting of 60%nF = and

20%n nQ A= = . Each node randomly generates queries for
the 1000 web services. The simulation is conducted under
three priority schemes 2P , 4P and 6P within 200 time
steps. When the simulation stops, it is likely that there are
still query messages and reply messages flowing in the
network. However, our evaluation does not take this part of
messages into account. That is to say, we just leave them

behind. Based on extensive experiments, the availability and
latency of the Chord network is illustrated in Fig. 4 and Fig.
5, respectively.

Fig. 3. Responsibility ratio of the 20 nodes

 As shown in Fig. 4, the availability of the network under
the above three priority schemes increases as time goes by.
For availability of the network, the overall performances of
the three priority schemes are ranked as 6 4 2P P P> > . In
the early stage of the simulation, since query messages and
reply messages are in transmitting phrase, the availability of
the network keeps at zero. For 6P , 4P and 2P , the first
non-zero values arise around the time steps 50, 90 and 110,
respectively. To some degree, the time of the first non-zero
value also indicates a judgment of the performance of the
three priority schemes in terms of latency. At the time step
200, the priority scheme 6P shows the highest availability
of the network which is 69%nAV = . The lowest
availability of the network at the time step 200 is given by
the priority scheme 2P whose 30%nAV = .
 As depicted in Fig. 5, the latency of the network under
the three priority schemes is also increasing with the
increase of the time step. Moreover, the rank of overall
performances in terms of latency is 6 4 2P P P> > , which is
the same with availability. Since the availability of the
network is zero in the early stage of the simulation, the
latency of the network cannot be calculated; then we show

Cong Gao, Jianfeng Ma and Xiaohong Jiang/Journal of Engineering Science and Technology Review 6 (5) (2013) 129 -136

 135

the value of latency by zero. For each priority scheme, the
occurrence of the first non-zero value of latency coincides
with that of availability. At the time step 200, the priority
scheme 6P shows the smallest latency of the network which
is 145nLA = . The largest latency of the network at the time
step 200 is given by the priority scheme 2P whose

231nLA = .

Fig. 4. AVn vs. time step

Fig. 5. LAn vs. time step

 Based on the analysis of Fig. 4 and Fig. 5, we conclude
that the comprehensive performances of the three priority
schemes are ranked as 6 4 2P P P> > . In specific, the ranking
result indicates that nF is the dominate parameter; and it
should be assigned with the highest priority. In the cases of
4P and 2P , where nF is assigned with the second priority,

nA is much more important than nQ .

5. Conclusion and Future Work

This work presents a traffic model which is based on the
Chord protocol. The traffic model focuses on the node
behavior in a Chord network. Our model considers two
major types of message during the process of web service
discovery: query message and reply message. In order to
facilitate the presentation of the traffic model, five message
queues are designed in an individual node. The centerpiece
of our model is the traffic management module in a node.
The traffic management module is responsible for regulating
the dequeue operations of the answer queue, the forward
queue and the query queue. In other words, it controls the
enqueue operation of the outgoing queue. We build a
simulation system based on OMNeT++ and evaluate our
model. The simulation results are analyzed in terms of
availability and latency. Finally, we come to the conclusion
that the percentage of processing ability which deals with the
forward queue is of most importance; and it should be
assigned with the highest priority. The second one and the
third one are the percentages of processing ability which
handle the answer queue and the query queue, respectively.
However, there is room for improvement. In practice, both a
query message and a reply message often possess different
priorities which indicate different urgent degrees. The
proposed model does not consider the priority of messages
during the enqueue and dequeue operations. Consequently,
the analysis of messages with different urgent degrees is
absent. Moreover, in order to conduct a further in-depth
study, the forward queue should be divided into two queues
which deal with the query messages to be forwarded and the
reply messages to be forwarded, respectively.

Acknowledgment
 This work is supported by Program for the Key Program
of NSFC-Guangdong Union Foundation (U1135002), Major
national S&T program (2011ZX03005-002), National
Natural Science Foundation of China (60872041, 61072066),
the Fundamental Research Funds for the Central Universities
(JY10000903001, JY10000901034, K5051203010) and the
GAD Pre-Research Foundation (9140A15040210HK61).

References

1. Benatallah, Boualem, et al. "On automating Web services

discovery." The VLDB Journal 14.1 (2005): 84-96.
2. Nayak, Richi. "Facilitating and improving the use of Web services

with data mining." Research and trends in data mining technologies
and applications (2007): 309-327.

3. Wang, Hongbing, et al. "Web services: problems and future
directions." Web Semantics: Science, Services and Agents on the
World Wide Web 1.3 (2004): 309-320.

4. Al-Masri, Eyhab, and O. H. Mahmoud. "Discovering web services
in search engines." Internet Computing, IEEE 12.3 (2008): 74-77.

5. Org, U. D. D. I. "UDDI technical white paper."
2000Ο09Ο06)[2005Ο09Ο27]. http://www. uddi.
org/pubs/Iru_UDDI_ Technical_White_Paper. pdf/20000906. html
(2000).

Cong Gao, Jianfeng Ma and Xiaohong Jiang/Journal of Engineering Science and Technology Review 6 (5) (2013) 129 -136

 136

6. Vu, Le-Hung, Manfred Hauswirth, and Karl Aberer. "QoS-based
service selection and ranking with trust and reputation
management." On the Move to Meaningful Internet Systems 2005:
CoopIS, DOA, and ODBASE. Springer Berlin Heidelberg, 2005.
466-483.

7. ShaikhAli, Ali, et al. "Uddie: An extended registry for web
services." Applications and the Internet Workshops, 2003.
Proceedings. 2003 Symposium on. IEEE, 2003.

8. Ananthanarayana, V. S., and K. Vidyasankar. "Dynamic primary
copy with piggy-backing mechanism for replicated UDDI registry."
Distributed Computing and Internet Technology. Springer Berlin
Heidelberg, 2006. 389-402.

9. Schmidt, Cristina, and Manish Parashar. "A peer-to-peer approach
to web service discovery." World Wide Web 7.2 (2004): 211-229.

10. Emekci, Fatih, et al. "A peer-to-peer framework for web service
discovery with ranking." Web Services, 2004. Proceedings. IEEE
International Conference on. IEEE, 2004.

11. Papazoglou, Mike P., Bernd J. Krämer, and Jian Yang. "Leveraging
web-services and peer-to-peer networks." Advanced Information
Systems Engineering. Springer Berlin Heidelberg, 2003.

12. Gao, Cong, and Jianfeng Ma. "A Collaborative QoS-Aware Service
Evaluation Method for Service Selection." Journal of Networks 8.6
(2013): 1370-1379.

13. Ahson, Syed A., and Mohammad Ilyas, eds. SIP handbook:
services, technologies, and security of Session Initiation Protocol.
CRC Press, 2008.

14. Filali, Imen, et al. "A survey of structured p2p systems for rdf data
storage and retrieval." Transactions on large-scale data-and
knowledge-centered systems III. Springer Berlin Heidelberg, 2011.
20-55.

15. Ripeanu, Matei. "Peer-to-peer architecture case study: Gnutella
network." Peer-to-Peer Computing, 2001. Proceedings. First
International Conference on. IEEE, 2001.

16. Haas, Zygmunt J., Joseph Y. Halpern, and Li Li. "Gossip-based ad
hoc routing." IEEE/ACM Transactions on Networking (ToN) 14.3
(2006): 479-491.

17. Good, Nathaniel S., and Aaron Krekelberg. "Usability and privacy:
a study of Kazaa P2P file-sharing." Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, 2003.

18. Ranjan, Rajiv, Aaron Harwood, and Rajkumar Buyya. "Peer-to-
peer-based resource discovery in global grids: a tutorial."
Communications Surveys & Tutorials, IEEE 10.2 (2008): 6-33.

19. Rowstron, Antony, and Peter Druschel. "Pastry: Scalable,
decentralized object location, and routing for large-scale peer-to-
peer systems." Middleware 2001. Springer Berlin Heidelberg, 2001.

20. Stoica, Ion, et al. "Chord: A scalable peer-to-peer lookup service
for internet applications." ACM SIGCOMM Computer
Communication Review. Vol. 31. No. 4. ACM, 2001.

21. Zhao, Ben Y., et al. "Tapestry: A resilient global-scale overlay for
service deployment." Selected Areas in Communications, IEEE
Journal on 22.1 (2004): 41-53.

22. Maymounkov, Petar, and David Mazieres. "Kademlia: A peer-to-
peer information system based on the xor metric." Peer-to-Peer
Systems. Springer Berlin Heidelberg, 2002. 53-65.

23. Morris, S. R., et al. "Chord: A Scalable Peer-to-peer lookup service
for internet applications:[Technical Report. TR-819]." (2001).

24. The Network Simulator – ns-2,
http://www.isi.edu/nsnam/ns/index.html

25. The Network Simulator – ns-3, http://www.nsnam.org/releases/
26. OPNET Modeler Home Page:

http://www.opnet.com/products/modeler/home.html
27. OMNeT++: Discrete Event Simulation System:

http://www.omnetpp.org/
28. Network Simulator, http://tetcos.com/netsim_gen.html
29. FIPS, PUB. "180-1. Secure hash standard." National Institute of

Standards and Technology 17 (1995).
30. Al-Masri, Eyhab, and Qusay H. Mahmoud. "Discovering the best

web service." Proceedings of the 16th international conference on
World Wide Web. ACM, 2007.

