
   
Journal of Engineering Science and Technology Review 8 (1) (2015) 91 - 95 

Special Issue on Econophysics	  
	  
	  

Conference Article 
 

Application of continuous-time random walk to statistical arbitrage 
 

Sergey Osmekhin* and Frédéric Délèze 
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Abstract	  
	  
An analytical statistical arbitrage strategy is proposed, where the distribution of the spread is modelled as a 
continuous-time random walk. Optimal boundaries, computed as a function of the mean and variance of the first-
passage time of the spread, maximises an objective function. The predictability of the trading strategy is analysed 
and contrasted for two forms of continuous-time random walk processes. We found that the waiting-time 
distribution has a significant impact on the prediction of the expected profit for intraday trading 
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1 Introduction 
 
Pairs trading, or more generally statistical arbitrage, 
is a widely known relative pricing strategy 
commonly used by the proprietary trading desks of 
investment banks and hedge funds. Based on the 
principle of mean-reversion, the strategy consists of 
trading the spread of two co-integrated portfolios. A 
long position in the spread is taken as the trading 
pairs departs from its long-term equilibrium. The 
reverse position is taken as the price difference 
converges back. 
 The strategy has considerably evolved since its 
inception in the 1980s. The development of 
telecommunication and the generalization of 
electronic exchanges have drastically changed the 
way markets operate. Nowadays more than 60% of 
all executions are generated by fully automated 
trading strategies resulting in a strong increase in 
both trading value and market efficiency. 
Nevertheless, Gatev et al 2006 [1] and Perrin [2] 
have shown that the original pairs trading strategy 
that was hugely profitable twenty years ago is still 
profitable today when trading daily. 
 Numerous extensions of the original model have 
been proposed recently. Elliott et al 2005 [3] 
provides an analytical framework, where the spread 
is modelled as an Ornstein-Uhlenbeck process and 
the value of the spread is estimated by Kalman 
filtering. Triantafyllopoulous and Montana [4] 
extended Elliott et al algorithm with time-varying 
coefficients. Bertram 2009 [5] follows the same 
approach and describes a general optimal trading 
strategy where the spread follows an Itô´s process 

and the optimal trading boundaries solve the 
Fokker-Planck equation of the first-passage time of 
the spread. 
 The drawback of these approaches is to assume 
that the log-prices are normally distributed. Stock 
returns are known to be leptokurtic and the 
volatility is not constant over time [6]. A second 
limitation of traditional research in finance is to 
sample asset prices at regular time intervals and to 
only model prices as stochastic processes. Indeed, 
the time between transactions increases the 
predictability of asset returns at a market 
microstructure level. A sudden lack of market 
activity on a very liquid instrument anticipates 
market jumps while a very intense period of activity 
with thin volumes does not move prices. 
 To circumvent these two limitations, we present 
an optimal trading strategy tailored for high-
frequency trading, where the distribution of the 
spread follows a Continuous-Time Random Walk 
(CTRW), which fully takes into account the non-
Markovian, fat-tailness and non-local characters of 
time series. At a market microstructure level, 
transaction prices are not martingales and the 
random-walk model is no longer considered to be a 
complete and a valid description of short-term price 
dynamics. Indeed, short-run security price changes 
typically exhibit both extreme dispersion and 
dependence between successive observations [7]. In 
addition, the first-order autocorrelations of short-run 
speculative price changes are usually negative [8]. 
Moreover, the time between two executions varies 
and needs to be modelled stochastically. 
 The paper presents the continuous-time random 
walk approach to the statistical arbitrage trading 
frame- work for the first time. Using tick-by-tick 
prices of the liquid stocks ANZ.AX and ANZ.NZ we 
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found that the waiting time distribution has a 
significant impact on the expected profit prediction. 
In the present study we show the importance of the 
survival probability distribution for the high-
frequency trading strategies. The following chapter 
presents the model: the optimal trading strategy is 
first described and then the two forms of CTRW 
used to model the dynamics of the spread are 
exposed.  The third chapter presents the empirical 
results.  The tick-by-tick transactions for the trading 
pairs is described the model assumptions are 
presented.  Finally, the impact and performance of 
spread modelling on the optimal trading strategy 
are discussed. 
 
 
2 Model 
 
2.1 Optimal trading strategy 
One of the key considerations in pairs trading consists 
of finding optimal barrier levels, which determine the 
entry and exit levels of the strategy and condition the 
frequency of the trades. The total time of the strategy 
is the sum of the expected time it takes for the spread 
to go from the entry level until the exit level and the 
time to go from the exit level back to the entry level, 
i.e. 𝑇!"!#$ =𝑇!"#!$+𝑇!"#$. The trading frequency is 
therefore   !

!!"!#$
. We follow the same approach as 

Bertram [5] and compute the optimal boundary 
levels as a function of the first-passage time of the 
spread. The first-passage time of xt is defined as 
the first time that the logarithm of the spread process 
xt  reaches an upper boundary b1 or a lower 
boundary b2: 
 

𝑇 !! ,!! 𝑥! =
𝑖𝑛𝑓
𝑡! ≤ 𝑡 𝑡|𝑏! < 𝑥! < 𝑏!; 𝑥! = 𝑥 0 } 

 
 Assuming that the probability densities of finding 
a log - spread x at a future time t, denoted as p(x, t|x0, 
t0), satisfy the absorbing initial conditions p(xL,t)=0 
and p(xU, t)=0, xL<xU, the probability that the 
process x reaches the boundaries is: 
 

𝐺 𝑡;𝑥!,𝑥! =1−   𝑝
!!

!!
𝑥, 𝑡 𝑥!, 𝑡! 𝑑𝑥 

 
 The corresponding density function solves: 
 

𝑔 𝑡 𝑥!, 𝑡! =
𝜕
𝜕𝑡 𝐺 𝑡 𝑥!, 𝑡! = 𝑝

!!

!!
𝑥, 𝑡 𝑥!, 𝑡! 𝑑𝑥 

 
 
 Given two barrier levels b1 and b2, b1<b2,  the  
probability  density  function  of  the  first-passage  time 
f(t;b1, b2) is the convolution of the density function g 
from the lower limit until the upper limit with the 
density function g  from the lower boundary until the 
upper limit, i.e. 
 
f t;b!,b!   = g !!,!! (t;b!, t!)⨂g !!,! (t;b!, t!)    (1)  
 
 The expected trading length solves 𝐸 𝑇!"!#$ =

𝑡𝑓 𝑡;b!,b! 𝑑𝑡
!
!  and the expected trade frequency 

and variance: 

𝐸
1

𝑇!"!#$
=

1
𝑡

!

!
𝑓 𝑡;b!,b! dt 

 

𝑉𝑎𝑟
1

𝑇!"!#$
=

1
𝑡!

!

!
𝑓 𝑡;b!,b! dt−𝐸

1
𝑇!"!#$

!

 

 
 A trading strategy is optimal if the boundaries b1 
and b2 maximise an objective function, which 
typically is the expected return of a portfolio µp  or 
its Sharpe ratio.  With fixed barriers b1 and b2 the 
return per trade is deterministic b2 — b1 — c where c 
is the transaction cost, but the time between trades is 
stochastic and depends on the first-passage time of 
xt. 
 The expected profit and variance per trade 
frequency are: 
 

𝜇! = 𝑏!−𝑏!− 𝑐 𝐸
1

𝑇!"!#$
= 𝑏!−𝑏!− 𝑐

1
𝑡

!

!
𝑓 𝑡;b!,b! dt 

 

𝜎! = 𝑏!−𝑏!− 𝑐 !𝑉𝑎𝑟
1

𝑇!"!#$
= 𝑏!−𝑏!− 𝑐 ! 1

𝑡!
!

!
𝑓 𝑡;b!,b! dt

−𝜇!! 
 
 
2.2 Continuous-time Random Walk 
 The log spread process xt is modelled by CTRW 
introduced by Montroll and Weiss [9]. We follow the 
same approach as Scalas et al [10, 11, 12] and 
introduce the following notations: 
 
x(t)=logS(t) :logarithm of the spread  

price S at time t. 
𝜏! = 𝑡!!! − 𝑡! :time between two  

transactions, also called 
waiting time. 

𝜉! = 𝑥 𝑡!!! − 𝑥(𝑡!)  :log-return of asset price S  
at time t, i.e. log!!!!

!!
 

φ(ξ,τ) :joint probability density of  
returns and waiting-time. 

𝜓 𝜏 = 𝜑 𝜉, 𝜏 𝑑𝜉!
!!            :probability density function  

                                           of the waiting time. 
𝜆 𝜏 = 𝜑 𝜉, 𝜏 𝑑𝜏!

!  :probability density function  
of asset return. 

p(x,t) :probability density  
function of finding x at time 
t.  

𝑓 𝑠 = 𝑒!!"!
! 𝑓 𝑡 𝑑𝑡   :Laplace transform of f (t). 

 
 Given a transaction at time ti-1, ψ  represents 
the probability density function that a transaction 
took place at time ti-1+τ. The probability that a 
transaction was carried out within 𝜏≤ 𝑡!−𝑡!!!≤𝜏+
𝑑𝜏  is ψ(τ)dτ. λ represents the transaction probability 
density function that the log-price jumped from x to 
x+ξ.  The probability that the log-price did not change 
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during a period greater or equal to τ, also called 
survival probability until time instant t at the initial 
position x  = 0, denoted by  Ψ(τ), is Ψ(τ)=1- 
𝜓(𝑡)𝑑𝑡!

! = 𝜓(𝑡)𝑑𝑡!
!  

 The probability of finding a log-price x at future 
time t, p(x, t), solves the following master equation: 
 
 
𝑝 𝑥, 𝑡 = 𝛿 𝜒 𝛹 𝑡 + 𝑑𝑡!𝜓(𝑡 − 𝑡!)!

! 𝜆(𝑥 −!
!!

𝑥!)𝑝(𝑥!, 𝑡!)𝑑𝑥!       (2) 
 
 
p(x,0)=δ(x) 
 
 An alternative form of the master equation (2) was 
proposed in Mainardi et al [11], which is the solution 
of the Green function or the fundamental solution of 
Cauchy problem with the initial condition p(x, 0) = 
δ(x): 
 
 
𝜑(𝑡 −!

! 𝑡!) !
!!!
𝑝 𝑥. 𝑡! 𝑑𝑡! = −𝑝 𝑥, 𝑡 + 𝜆(𝑥 −!

!!
𝑥!)𝑝(𝑥!, 𝑡)𝑑𝑥! (3) 
 
where the kernel φ(t) is defined through its Laplace 
transform: 
 

𝜑 𝑠 =
𝑠𝜓(𝑠)
1−𝜓(𝑠)

 

 
 
 This form of the master equation is clearly non-
Markovian as φ(t) is defined as a function of the 
survival probability. As  𝜑 𝑠 =1  the master 
equation for the CTRW becomes Markovian: 
 
 
!
!"
𝑝 𝑥, 𝑡 = −𝑝 𝑥, 𝑡 + 𝜆(𝑥 − 𝑥!)𝑝(𝑥!,!

!! 𝑡)𝑑𝑥!  (4) 
 
 
with p(x,0)=δ(x). 
 
 
3 Empirical results 
3.1 Spread 
 
 To test the algorithm with tick-by-tick data, we 
construct a mean-reverting and stationary portfolio 
composed of the two listings of the Australia and 
New Zealand Banking Group Limited (ANZ) [13]. 
ANZ.AX 
is traded in AUD on the Australian stock exchange 
in Sydney. The ANZ Bank New Zealand Limited, 
ANZ.NZ, is traded in NZD in Wellington on the 
New Zealand stock exchange. The time zone 
difference between the two exchanges is two hours. 
Using the Australian local time, the spread, x, is 
computed as follows: 
 
xt = log(ANZ.AX) — log(ANZ.NZ) + 
log(F XAUD/NZD )                                        (5) 
 
 

 

Fig. 1.  Spread xt  between ANZ.NZ and ANZ.AX using 
tick-by-tick trade data covering the period between 4 January 
2012 until 8 March 2013. 

 

 

 
 
(a) Waiting-time distribution of xt 

 
(b) Distribution of the spread xt 
 
Fig. 2. Waiting-time and asset return distribution of the 
spread xt. 
 
 The Augmented Dickey-Fuller and the Phillips-
Perron tests both reject the null hypothesis that the 
spread xt has a unit root at 99% confidence level. 
Thus, the spread is likely stationary. ANZ.NZ is 
traded between 10:00 and 16:45 local time and 
ANZ.AX between 10:00 and 16:00 Sydney time. 
The spread depicted in figure 1 is computed for the 
period between 4 January 2012 and 8 March 2013. 
To prevent information asymmetry, the spread is 
calculated when both markets are open. It includes 
306,071 observations. λ(ξ) is typically modelled 
normally or better with a skewed Student-t 
distribution to account for the slight excess 
kurtosis and positive skewness. The time between 
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in figure 2a. The intertrade duration at tick-by-tick level is non-exponentially distributed as shown by
Scalas et al [14] and follows a mixture of compound Poisson processes [15]. The distribution of the spread
is close to normal even though the Jarque-Bera test of normality is rejected at 99% confidence level as
shown in figure 2b. We do not assume any predefined distribution for the asset return distribution �(⇠)
and the waiting-time density function  (⌧) but infer them from the tick data.
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transactions exhibits a time-decay as illustrated in 
figure 2a. The intertrade duration at tick-by-tick 
level is non-exponentially distributed as shown by 
Scalas et al [14] and follows a mixture of compound 
Poisson processes [15]. The distribution of the spread 
is close to normal even though the Jarque-Bera test 
of normality is rejected at 99% confidence level as 
shown in figure 2b. We do not assume any 
predefined distribution for the asset return 
distribution λ(ξ) and the waiting-time density 
function   ψ(τ) but infer them from the tick data. 
 
 

 

Fig 3. Profitability of the statistical trading strategy as a 
function of transaction cost and barrier level. When the 
transaction cost is low, the trade frequency increases but the 
profit per trade is low. 
 
 
Table 1. Performance and predictability of the 
Markovian and non-Markovian approaches 
comparing to the real profit generated by the 
strategy. 
Cost 
(%) 

Expected 
return 
Marko- 
vian (%) 

Barrier 
level 
Marko- 
vian 
(%) 

Expected 
return 
non 
Mark. 
(%) 

Barrier 
level 
non- 
Mark. 
(%) 

Real 
return 
(%) 

Optimal 
barrier 
level (%) 

Nb 
Deals 

0.1 1696 0.30 227 0.30 258 0.26 962 

0.2 550 0.35 114 0.35 179 0.39 676 

0.3 232 0.37 61 0.37 127 0.50 502 

0.4 113 0.40 41 0.40 93 0.65 324 

0.5 70 0.45 23 0.45 62 0.66 312 

0.6 39 0.50 13 0.50 41 0.80 180 

0.7 22 0.55 8 0.55 29 0.90 128 

0.8 13 0.60 5 0.60 22 1.15 62 

0.9 8 0.65 3 0.65 13 1.09 68 

1.0 5 0.70 2 0.70 10 1.28 40 

 
 
 
3.2 Profitability of the strategy 

Figure 3 shows the evolution of the real profit of 
the trading strategy as a function of the transaction 
cost and its impact on barrier levels. Stationary 
spread processes with high speed of mean-reversion 
built around very liquid financial assets are the 
best candidates for the described statistical trading 
strategy. The expected profit is maximal when both 
transaction cost and barrier levels are low. 
 Table 1 compares the predictability of the 
Markovian and non-Markovian approaches of the 
strategy for a range of transaction costs. The first 
column represents the transaction cost required to 
take a long or short position in the spread.  The 
optimal barrier levels for the Markovian (4) and 
non-Markovian (3) master equations are given in 
columns 3 and 5. They are identical, meaning that the 
profit per trade, b2 — b1 — c, is the same for both 
strategies. However, the trade frequency, computed 
as a function of the first-passage time (1) of the log-
price xt, is model-dependent. It is governed by the 
probability density function of the asset return λ(ξ) 
and also depends on the waiting-time distribution 
ψ (τ) for the non-Markovian approach. The 
probability of breaching a barrier is higher during 
high activity than illiquid periods. The impact of the 
waiting-time distribution on the model precision is 
particularly important for liquid trading pairs 
offering a very low transaction cost. When the cost 
c = 0.1%, the Markovian model is a poor predictor of 
the real profit generated by the strategy. It forecasts 
an expected profit of 1696% for the period 
considered while the actual expected profit reaches 
258%. For lower frequency trading the contribution 
of the waiting-time distribution   ψ(τ) is limited and 
the non-Markovian equation underestimates the real 
profit. 
 
 
4 Conclusion 
 
This paper describes an optimal trading strategy, 
where the spread is modelled by continuous-time 
random walk following a non-Markovian process. 
We found that the waiting-time distribution has a 
significant impact on the prediction of the 
expected profit for intraday trading. The non-
Markovian approach out- performs the Markovian 
model for high-frequency trading but underestimates 
the real profit when trading costs are higher and 
positions are kept several days. The testing of the 
statistical trading strategy shows the importance of 
the survival probability in the optimal trading 
framework. Non-stationary processes subject to 
jumps lead to discrepancies between theoretical 
model predictions and actual observations. Further 
theoretical work is needed to cover this gap. 
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