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Abstract 
  

This paper presents the speed control of permanent magnet synchronous motor with salient poles based on two-step 
linearization method. In the first step, the direct compensation of the nonlinearities in the equations of current is used. In 
the second step, the input-output linearization in the state space is used for the decoupling of flux and torque axis. 
Simulated results are compared to the field oriented vector control structure with PI controllers in order to show 
differences in the performance of both approaches. 

 
	 	Keywords:nonlinear control, permanent magnet synchronous machine, feedback linearization, transformation matrix, nonlinear 

canonical form 
 __________________________________________________________________________________________ 

 
1. Introduction 
 
Permanent magnet synchronous motors (PMSM) are widely 
used in a large number of applications demanding very high 
dynamic performance. Current research on the PMSM 
control is mainly focused on the sensorless control methods. 
These are either based on the motor fundamental equations, 
as the back EMF integration [1], extended Kalman filter [2], 
or sliding mode observer [3]. The common problem of these 
methods is that the performance of the position estimations 
is dependent on the back EMF voltage, which is small in a 
low speed region and thus the performance is degraded. 
Various techniques were presented to improve this 
performance, such as in [4] or [5].  
 Nevertheless, there are applications where the sensorless 
control is not required and still the best performance is 
achieved with the use of a sensor at the rotor shaft. 
Therefore, there is a constant need for research in the field of 
the control designs with the sensor. Authors, dealing with 
the nonlinear modelling and control of PMSM with the 
sensor, presented interesting techniques. In [6], sliding-mode 
control and extended sliding-mode disturbance observer was 
introduced in order to considerably improve the dynamic 
performance. Model reference adaptive control for the 
sensor application was presented in [7]. Current research on 
the sensor control involves the use of FPGA circuits [8], low 
resolution sensors for high performance [9], the application 
of predictive control methods [10] or the energy efficient 
control [11]  
 An assumption of round rotor (i.e. Ld=Lq, non-saliency) 
makes overall model of PMSM easier to control. 
Considering the impact of the saliency effect, additional 
nonlinearity will appear in the model and overall nonlinear 

control design becomes more complicated in the term of 
decoupling demands. Modelling of various saliency effects 
was presented in [12]. A variety of approaches can be used 
for nonlinear control of PMSM, such as input-output 
linearization [13] or sliding-mode control [14].  In this 
paper, we present nonlinear control of PMSM with rotor 
saliency with the design consisting from the two steps. At 
first, two of the three nonlinearities in equations are 
compensated directly by adding an appropriate feedforward 
voltage signal. In the second step, nonlinear controller, 
which deals with the third nonlinearity, is designed by input-
output linearization.  
 
 
2. Nonlinear model of the PMSM with salient poles 
 
The mathematical model of the PMSM in the d-q rotor 
reference frame involving saliencies is: 
 

  

did
dt

= − R
Ld

id +
pLq

Ld
ω  iq +

1
Ld

ud        (1) 

	

  

diq
dt

= − R
Lq

iq −
pLd
Lq

ω  id +
1
Lq

uq −
ψ PM p

Lq
ω           (2) 

  

  

dω
dt

=
Te
J
− 1

J
TL            (3) 

 

  
Te =

3p
2

ψ PM iq + (Ld − Lq )idiq( )        (4) 

 
 In (1)-(4) R, Ld, and Lq, are the per-phase armature 
resistance and the d-axis and q-axis inductances, 
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respectively;   ψ PM  is the permanent-magnet flux, p is the 
number of pole pairs, J is the moment of inertia, Te and TL 
are the electromagnetic and the load torque, respectively; ω 
is rotor angular speed and id, iq are the d-axis and q-axis 
component of the armature current, respectively. We 
consider the machine model as two input single output time 
invariant continuous system: 
 

   

!x (t) = A(x )+ Bu (t)+ Ez(t)
y = C(x )

       (5) 

 
 Choosing state variables: x1=ω, x2=iq, x3=id, y=ω, z=TL, 
u1=uq, u2=ud we get nonlinear state-space representation of 
machine model (a1-a7, b21, b32, e are corresponding 
constants) where the vector of the states and vector of the 
inputs are: 
  

  x = [x1  x2   x3 ];  u = [u1  u2];         (6) 
 
the nonlinear state matrix: 
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the input and the error matrix: 
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 It should be noticed, that the first two rows of the state-
space model represent the torque-speed subsystem and the 
last row represents the field current subsystem. Nonlinear 
controller in the state-space is designed in order to decouple 
both subsystems and to assure desired dynamics.  
 
 
3. Direct compensation of nonlinearities in current 

equations 
 
We introduce the compensations for nonlinearities that can 
be simply compensated by adding an opposite signals of 
nonlinearities to the corresponding control variables in this 
section. We define input variables for the system (5) as: 
 

  

u1 = u10 + ucom1      
u2 = u20 + ucom2           

(9) 

 
where the inputs for the direct compensation of the 
nonlinearities are defined as: 
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b21
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ucom2 = − 1
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      (10) 

 

and u10, u20 are the new pre-defined control variables. Then 
simplified nonlinear state-space model is: 
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 Proposed compensations have brought significant 
simplification to the system because the two of the three 
nonlinearities are directly compensated. Now we design 
nonlinear controller for the system (11) with the use of 
nonlinear canonical form [15].  

 
 

4. Design of the nonlinear controller 
 
4.1 Controllability matrix 
For the class of two-input nonlinear systems a controllability 
matrix is constructed as: 
 

  

QR(x ) =
b1(x )  Nb1(x ) ... N n1−1b1(x )      b2(x )  Nb2(x )

 ... N n2−1b2(x )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   (12) 

 
where   b1, b2  are the columns of the input matrix, n1 and n2 

are the ranks of the subsystems, and   Nb (x ) is defined for 
the constant input matrix B as: 
 

  
Nb (x ) = ∂A(x )

∂x
B(x )       (13) 

 
 In our case n1=2 and n2=1 , thus controllability matrix 
for the system (11) is: 
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0 b21(a1 + a2x3) 0

b21 −a3b21 0

0 0 b32
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⎢
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                  (14) 

 
 System is controllable until the controllability matrix is 
non-singular. It holds for the case of: 
 

 
id ≠ −

ψ PM
Ld − Lq

       (15) 

 
4.2 The transformation matrix 
The transformation matrix for the nonlinear canonical form 
is [15]: 
  

  
T (x ) = t1(x ) ... N n1−1t1(x )      t2(x ) ... N n2−1t2(x )⎡

⎣
⎤
⎦

T
   (16) 

  
where 
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Nti(x ) =

∂ti(x )
∂x

⎡

⎣
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T

A(x )             (17) 

 
 The rows of the transformation matrix are obtained by 
solving a set of partial differential equations: 
 

  

∂ti(x )
∂x

⎡

⎣
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⎦
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T

= ki(x )qRi
T (x );   i = 1,2...      (18) 

 
where   ki(x )  is a user-defined function and   qRi

T (x )  is the 
last row of each subsystem for inverse controllability matrix. 
In our case the last rows are defined as: 
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⎥

  

 
 The user-defined functions have conveniently been 
chosen as: 
 

  k1(x ) = b21(a1 + a2x3);    k2(x ) = b32(a1 + a2x3);     (19) 
 
 Thus the transformation matrix is: 
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    (20) 

 
4.3 Nonlinear canonical form 
Nonlinear controllers have been designed by feedback 
linearization method according to [15]. With the 
transformation matrix (20) the transformation to the 
nonlinear controllability form is performed as following: 
 

   
!xR = ∂T (x )

∂x
⎡

⎣
⎢
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 New state variables for transformed system are 
introduced, denoted as xRi. New transformed matrices are 
defined as: 
 

  

AR(x ) =
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 The input matrix BR can be decomposed as: 
 

  

BR(x ) = IR M =
0 0
1 0
0 1
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 If the input matrix is defined as follows: 
 

  

u = M −1(x )
− fR2(x )+ vR2 − r2xR2

− fR3(x )+ vR3 − r2xR3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

    (25) 

 
and are further introduced to the system (21), both 
subsystems becomes autonomous and following system with 
a new inputs vR2 and vR3 is obtained: 
  

   

!xR =
0 1 0
0 −r2 0

0 0 −r3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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⎢
⎢
⎢
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⎦
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⎥
⎥

vR2

vR3

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (26) 

 
 It can be observed that the system (26) is linear. It is 
shown in Fig. 1 with the linear state-space controllers 
included.  It is a “dummy” system, because neither the 
system nor its controllers will appear in the final control 
implementation.  We introduce full state-space controllers 
with integral action in order to compensate the disturbances: 
 

  
vRi = Ki (wRi − xRi )dt;    i = 1,2,3∫      (27) 

 
 It should be noted that using the integral part of 
controller according to (27) a new state variables vR1-vR3 
occurs. Furthermore, the system in Fig. 1 presents the 
cascade control structure with the inner current loop and 
superimposed speed control loop. Torque-speed subsystem 
and field subsystem are independently controlled. Unknown 
parameters of the linear state-space controllers can be found 
by the well-known pole-placement method.  
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Fig. 1. Dummy linear system with the state-space controllers  

	
	
5. Backward transformation 
 
The vector of the control variables  u according to (25) 
defines the nonlinear control law. It is formulated in 
transformed state-space variables and so the backward 
transformation is needed. Substitution of the transformed 
variables (xRi, vRi) is based on the definition of the 
transformation matrix (20). The nonlinear control law after 
the substitution is:  
 

  
u10 =

1
b21

v2 − r2x2 + a3x2 + a5x1 +
a2x2(r3x3 − v3)

a1 + a2x3

⎡

⎣
⎢

⎤

⎦
⎥    (28) 

 

  
u20 =

1
b32

(v3 − r3x3 + a6x3)       (29) 

 
 Based on the transformation matrix, the reference 
variable is defined as: 
 

  
 w2 =

wR2
a1 + a2x3

         (30) 

 
 Then following holds: 
 

  
w2 =

1
a1 + a2x3

(v1 − r11x1 − a1(r12x2 + d12v2 )−
a2(d12v2x3 + r12x2x3)

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   (31) 

 
 The general control law with the all controllers is shown 
in Fig. 2. 
 

 
Fig. 2. Overall scheme with the nonlinear controller   
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6. Simulation Results 
 
Designed control structure was simulated and compared with 
the classical field oriented vector control structure in dq-
frame with the PI controllers. Responses are shown in Fig. 3 
and Fig. 4, where the  subscript ss indicates the responses of 
nonlinear controllers and subscript PI indicates the responses 
of the PI controllers. The parameters of PMSM have been 
obtained according to [16] and are summed in Tab.1. Both 
controllers were designed in the way to achieve the same 
rise rime tr.  PI speed controller was designed according to 
the symmetrical optimum criterion, resulting in the tr = 8 ms. 
The value of tr with the damping coefficient d = 0,6 has been 
used as the performance index for the state-space controller, 
designed by the pole-placement method. The speed setpoint 
for the simulation was 70 rad/s. In t = 0,02 s current d-
component was set to -1,6 A to weaken magnetic field of the 
rotor and in t = 0,02 s, the motor was loaded with the 
nominal load. There are small differences in the current 
responses because the current loop with PI controllers 
behaves as the first-order system in contrast to the nonlinear 
controller behaving as the second-order system. Parameters 
of the PI controller and nonlinear controller were 
recalculated according to changed saliency ratio for both 
Fig. 3 and Fig. 4. It can be seen that if the saliency ratio is 
increased, the nonlinear state-space controller keeps the 
same dynamic under the load conditions, whereas the 
dynamic of the PI controller is slightly deteriorated.  
 

 
Fig. 3.  Step responses, Ld/Lq=2,18 
 

 
Fig. 4.  Step responses, Ld/Lq=6,18 
 

 
Table 1. Parameters of PMSM 

P mechanical power 200 W 
n nominal speed 3500 rpm 
Imax max. current 1,6 A 
R armature resistance 7 Ω 
Ld d-axis inductance 8,75 mH 
Lq q-axis inductance 4 mH 
p pole pair 5  
ψPM flux of PM 0,104 Wb 
J total inertia 0,000043 kg/m2 

	
 
7. Conclusion  

 
The input-output linearization of the PMSM model enables 
the analytical expression of the nonlinear controller with the 
acceptable number of the controller parameters, which can 
be even reduced by the singular perturbance method.  The 
transformation to the appropriate coordinates has been found 
and the system becomes linear. Anyway, the same solution 
can be obtained by using the exact linearization with the 
application of the Lie’s algebra, but it would require larger 
calculus. It is possible to find analytical solution of the 
nonlinear controller for the system even without 
feedforward, but resulted large number of the controller 
parameters would be unpractical to further implementation. 
Designed control structure compensates all nonlinearities in 
the mathematical model of the PMSM and comparing to 
traditional PI controllers, it shows similar performance. 
During field weakening, the nonlinearity affects the 
electromotive torque, but the performance of the nonlinear 
controller is preserved. With the increasing saliency ratio, 
the nonlinear controller shows better performance than the 
PI controller.  
 The contribution of this paper lies in the detailed 
description of the nonlinear controller design, which is based 
on the nonlinear canonical form. The dynamics of proposed 
nonlinear controller is fully adjustable, comparing to the PI 
controller, where only two parameters can be tuned. In 
addition, the dynamics of the proposed controller is 
preserved in the all operating points and regardless of the 
saliency ratio.  
 However, the complexity of the proposed control 
scheme, which in spite of everything contains a lot of 
parameters, brings only the slight improvement of the 
performance and only in specific cases, as was shown in the 
simulations. In the practical usage, where the system 
parameters may vary, an expected improvement of the 
presented control scheme would be negligible and less 
reliable then using well-established PI controllers.  
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