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Abstract 
 

Optimal oil field development strategies, especially well locations and production strategies for mature oil fields, should 
be determined to sustain yields. For a large-scale oil field, these problems are nonlinear, nonconvex, and computationally 
expensive. In this study, an efficient and robust derivative-free computational framework was developed to determine the 
optimal number, locations, and injection/production rates of infill wells for mature oil fields. The characteristics of 
mature fields were briefly described; optimization formulation and computational framework were presented. For this 
problem, the robust and parallelizable PSwarm, a hybrid of a pattern search algorithm and a particle swarm optimization, 
was investigated. The approach was applied to a large-scale real oil field that currently includes approximately 200 wells. 
Our optimized results were compared with those of the current plan provided by the oil industry. In particular, a higher 
oil production with the same amount of water injection and a higher net present value were obtained by our optimized 
approach than by the current plan. Therefore, the new derivative-free computational framework can efficiently solve well 
placement and production optimization problems for large-scale mature oil fields. 
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1. Introduction 
 
Well placement and production optimization have been 
extensively investigated. However, few research efforts have 
focused on mature oil fields. A mature field is a field that 
has been developed for many years (>10 years); this field is 
also characterized by a high water cut (>75%) [1]. These 
fields have considerable potential because they have 
generally been developed for many years under suboptimal 
conditions. Development adjustments, such as drilling new 
infill wells and changing the injection/production rates of 
wells, can improve the performance of mature fields and 
significantly increase oil recovery [2]. Infill wells are new 
wells added to an existing field within original well patterns. 
Infill drilling can accelerate oil recovery in heterogeneous 
reservoirs. Shifting well patterns alter fluid flow paths and 
increase sweep to areas with high oil saturations because 
well spacing is decreased. Nevertheless, this adjustment plan 
is difficult to distinguish because reservoir performance is 
affected by geological, engineering, economical, and other 
parameters. These problems can be formulated as several 
distinct optimization problems or as a joint optimization 
problem. 

Previous studies addressed the separate optimization of 
well locations [3, 4], well controls [5-7], and joint 
optimization of well location and controls [8]. Few studies 
have focused on the optimization of the number of new 
wells combined with well location and control optimization 
[9]. In this work, the optimization problems related to 

mature fields were considered. These problems include the 
optimization of the number of infill wells, the locations of 
infill wells, and the injection/production rate of all wells. 
These optimization problems can be solved either 
simultaneously or sequentially [8, 10]. Although 
simultaneous problems include global optima, a high 
computational budget is required and algorithms pose an 
increased risk of falling into local optima because of the 
large number of optimization variables. The sequential 
approach decouples the joint problem into several 
subproblems; as a result, problems can be solved more easily 
with optimized strategies than with existing approaches. 

Gradient-based algorithms and derivative-free 
algorithms have been investigated to solve well placement 
and production optimization problems. The gradient 
information of the objective function is employed by 
gradient-based algorithms [11, 12] in searching for optimal 
solutions, such as the steepest ascent method and the 
simultaneous perturbation stochastic approximation 
algorithm. For well placement and control optimization, a 
solution surface is generally nonconvex and has 
discontinuities. Thus, gradients are not easily calculated. 
Derivative-free algorithms [9, 13, 14], such as generalized 
pattern search and particle swarm optimization, are generally 
robust and naturally parallel; these algorithms have been 
commonly applied to solve well placement and control 
optimization problems. 

Considering the characteristics and the need for mature 
fields, we develop a framework to determine the optimal 
number of infill wells, their locations, and the optimal 
injection/production rates of all wells. As a global 
derivative-free optimization algorithm combining pattern 
search and particle swarm, PSwarm [15, 16] is applied as a 
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solver in the framework. This algorithm is robust and 
efficient for smooth and non-smooth problems in serial way 
and in parallel way [16, 17]. Our framework is applied to a 
large-scale real field that includes approximately 200 wells. 
The results are compared with those of a current plan 
provided by the oil industry. 

This paper is organized as follows. Section 2 describes 
the formulation of well placement and production 
optimization problems. Section 3 discusses the framework 
used to solve these problems. Section 4 provides an 
overview of PSwarm. Section 5 introduces our test case. 
Section 6 presents our conclusions. 
 
 
2. Problem formulation 
 
The generalized well placement and production optimization 
problem for mature fields can be stated as follows: 
 

    

max
z∈!nw ,v∈!n1 ,u∈"n2

 

subject to  

J z,v,u( ),
g z,v,u( ) = 0,

c z,v,u( ) ≤ 0,

                        (1) 

 
where J  is the objective function, either the net present 
value (NPV) or the cumulative oil produced; g  and c  are 
equality and inequality constraints, respectively. z  denotes 
the number of the infill wells; v  denotes the location 
variables of the infill wells; and u  denotes the well 
production variables, which are either bottom hole pressures 
or injection/production rates. 

The total number of variables depends on the number of 
infill wells. If the number of infill wells is i nfillN , and all 
infill wells are vertical, the locations of each well are 
provided by plane coordinates ( ),x y . Hence, the total 
number of variables for the generalized problem is 

( )infill exist infill2N N N+ + , where existN  is the number of 

existing wells. 1 infill2n N=  variables are associated with well 
placements and 2 exist infilln N N= +  variables are associated 
with well production. 

In this work, NPV is considered as the objective function. 
The optimization problem can be represented as follows: 
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where max

infillN  is the maximum number of infill wells to be 
drilled; iz  is a binary variable that prescribes whether or not 

a well is drilled; jC  is the cost of drilling the infill well i ; 

tN  and ktΔ  denote the number of time steps and step size at 

step k , respectively; por  is the produced oil revenue; and 
pwc  and iwc  are the cost of dealing with water produced and 

the cost of injected water. ,
po
i kq , ,

pw
i kq , and ,

iw
i kq  are the flow 

rates of oil, water produced, and water injected into well i  
at time step k , respectively. The time at the end of kth time 
step is kt ; 365τ =  days provides the appropriate 
normalization for time kt ; and b  is the fractional discount 
rate. 

,
po
i kq , ,

pw
i kq , and ,

iw
i kq  are functions of the well locations 

and rates; these variables can be obtained from a reservoir 
simulator. The constraints considered in this problem 
include bound constraints for well locations, bound 
constraints for production rates, and a maximum number of 
infill wells. 
 
 
3. Optimization framework 

 
The generalized optimization problem for mature fields 
includes integer variables (the number of infill wells and the 
infill well locations) and continuous variables (well rates). 
The total number of variables can be extremely large and 
thus can cause a large, high-dimensional search space. 
Moreover, the search space becomes discontinuous and 
rough because of the integer variables. However, the 
optimization of these variables requires a high computational 
budget; as such, this process is impractical for many 
applications. 

On the basis of this situation, we propose a 
computational framework that decouples the generalized 
optimization problem into three subproblems. We then 
optimize these three subproblems sequentially. The 
subproblems include the optimization of the number of infill 
wells, the optimization of the locations of infill wells, and 
the optimization of well production. The search space of 
each subproblem is significantly smaller than that of the 
joint problem. Although the global optima cannot be 
theoretically obtained, the sequential procedures reduce 
computational load. Thus, the optimal number, locations, 
and rates of wells for large-scale mature fields can be 
determined. 
 
3.1 Optimizing the number of infill wells 
The optimization of the number of infill wells is challenging 
because the optimal number of infill wells depends on the 
locations of the infill wells and how the well is operated. 
Instead of a numerical optimization method, a reservoir 
engineering theory is applied to determine the reasonable 
well density and to calculate the number of infill wells 
needed for the reservoir. 

According to reservoir engineering theory [18, 19], the 
relationship between the ultimate oil recovery and the well 
density can be stated as follows: 

 
1

,aaSoeη η
−−=                                         (3) 

 
where aS  is the well density, η  is the ultimate recovery, oη  
is the displacement efficiency, and a  is thewell-pattern 
coefficient. 
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From economic considerations [18], the reasonable well 
density rS  is given as follows: 

 
1 1ln 2ln ,o
r r

Nk aaS S
FC
η− −= +                                 (4) 

 
where N  is the geological reserves of the reservoir, k  is 
the sale price of oil, F  is the reservoir area, and C  is the 
cost of drilling each well. 

The optimal number of infill wells infil
t
l

opN  can be obtained 
by comparing the reasonable well density rS  and the actual 
well density aS : 

 
opt
infill ( ).r aN F S S= −                                       (5) 

 
For a mature reservoir, aS , η , oη , N , k , F , and C  

are known. We initially determine the value of constant a  
by using Equation (3). Then, we calculate the reasonable 
well density rS  by solving Equation (4). The number of 
infill wells can be obtained through Equation (5). 

Infill wells include production wells and injection wells. 
The number of infill production wells and the number of 
infill injection wells are related by the following equation: 

 
exist,o infill,o

exist,w infill,w

,
N N

R
N N

+
=

+
                                   (6) 

 
where exist ,oN , exist ,wN , infill,oN , and infill,wN  are the number 
of existing production wells, the number of existing 
injection wells, the number of infill production wells, and 
the number of infill injection wells, respectively. R  is the 
reasonable production-injection well ratio, usually provided 
by the oil industry. 

 
3.2 Optimizing the locations of infill wells 
In the well placement optimization problem, we seek to 
determine the optimal locations for a specified number of 
infill wells. The optimization problem is defined as follows: 

 

opt
infill

exist

1

, , ,
1

, , ,
1

lb ub

max
(1 )

( ( ) ( ) ( ))

( ) ,

subject t .o 

t

k

N
k
t

k

N
po po pw pw iw iw

i k i k i k
i

N
po po pw pw iw iw

i k i k i k
i

t
b

r q c q c q

r q c q c q

τ∈ =

=

=

Δ
+

⎡
− −⎢

⎢⎣
⎤

+ − − ⎥
⎦

≤ ≤

∑

∑

∑

v

v v v

v v v

¢

                 (7) 

 
During the well placement optimization procedure, all 

wells are produced with specified reasonable production 
rates. 

 
3.3 Optimizing the well production 
The well production optimization problem aims to determine 
the optimal rates for each of the production and injection 
wells. The optimization problem can be stated as follows: 
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4. Optimization algorithm PSwarm 
 

In this section, we briefly describe the optimization 
algorithm considered in this study. PSwarm [15] is a hybrid 
solver for global derivative-free optimization. By combining 
a pattern search method and a particle swarm search 
algorithm, PSwarm performs a heuristic search (particle 
swarm) for the global optimization with a rigorous method 
(pattern search) for the local optimization. Hence, PSwarm 
exhibits global convergence properties and can guarantee 
convergence to stationary point [16]. Moreover, PSwarm is a 
derivative-free algorithm especially suitable for practical 
instances where derivatives are unknown, or where 
derivatives are noisy and meaningless.  

PSwarm first performs particle swarm optimization. 
Whenever the particle swarm optimization fails to find a 
better solution, a local search is performed. During the local 
search phase, the poll step is applied to the best particle. The 
detailed description for PSwarm is provided in Algorithm 1. 

 
Algorithm 1. PSwarm algorithm [15]. 
a. Set the stopping tolerances tol 0α > , tol 0v > . 
b. Set the initial population size s, let {1, , }s= LI . 

c. Calculate the initial feasible swarm positions 1
0 0, , sx xL . 

d. Calculate the initial swarm velocities 1
0 0, , sv vL . 

e. Set 0 0, 1, ,i iy x i s= = L , 
1
0 0

0
{ , , }

ˆ arg min ( )
sz y y

y f z
∈

∈
L

. 

f. Choose 0 0α > , let 0t = . 
g. [Search step] 

Set 1ˆ ˆt ty y+ = . 
 for all i∈ I , do: 
  if ( ) ( )i i

t tf x f y< , then 

   Set 1
i i
t ty x+ = . 

   if 1 1ˆ
i
t ty y+ +< , then 

    Set 1 1ˆ i
t ty y+ += . 

    Set 1t t tα φα+ = . 
   end if 
  else 
   Set 1

i i
t ty y+ = . 

  end if 
 end for 

h. [Poll step] 
if the search step was successful, then 
 Skip the poll step. 
else 
 if there exists ( )d t D∈  s.t. ˆ ˆˆ ˆ( ) ( )t t t tf y d f yα+ <  

  Set 1ˆ ˆt t t ty y dα+ = + . 
  Set 1t t tα φα+ = . 
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 else if ˆ ˆˆ ˆ( ) ( )t t t tf y d f yα+ ≥ , then 

  Set 1ˆ ˆt ty y+ = . 
  Set 1t t tα θα+ = . 
 end if 
end if 

i. Compute 1 1, 2, ˆ( ) ( )i i i i i
t t t t t t t t tv v y x y xι µω νω+ = + − + − , i∈ I .  

j. Compute 1 1maxi
i i i
t t tx x vα+ += + , i∈ I . 

k. if 1 tol
i
tα α+ <  and 1 tol

i
tv v+ < , 1, ,i s= L ,  

 Stop.  
else 
 Let 1t t= + .  
 Drop particles in the search step if too close to each 

other, update I .  
 Go to Step g. 
end if 
 
Our implementation of PSwarm uses the parameters 

given in the work of Vaz et al. [15]. We choose 1tφ = , 

0.5tθ = . After two consecutive poll successes along the 
same direction, we choose 2tφ = . The other parameters are 
chosen as 0.5v µ= = ; 20s = ; max0.9 (0.5 / )t t tι = − , where 

maxt  is the maximum number of iterations. 
 
 

5. Example case 
 

5.1 Reservoir description 
A full-scale mature oil field is considered in this work. The 
geological and flow properties of the reservoir are provided 
in Table 1. The relative permeability curves are shown in 
Figure 1. The reservoir has been developed under water 
flooding for 50 years. This reservoir is in an extra high water 
cut stage with a water cut of 95.6%. The number of active 
production wells is 82 and the number of active injection 
wells is 64. Figure 2 shows the permeability, porosity, and 
present oil saturation, together with the locations of all wells 
in the reservoir. 

 
Table. 1. Geological and flow properties of the reservoir. 
Property Values Units 
Oil bearing area 19.1 km2 
Average porosity 0.3 - 
Permeability 100–2800 103 µm2 
Geological reserves 3740 104 t 
Oil viscosity in place 10–26 mPa•s 
Oil density in place 0.84–0.88 g/cm3 
Initial pressure 11.9 MPa 
Initial temperature 80 °C 
Reservoir buried depth 1890–2120 M 

 
 

 
Fig. 1. Relative permeability curves of the reservoir. 
 
 

The simulation model of the reservoir contains a two-
phase oil-water system with 238 161 13× ×  grid blocks; of 
these blocks, 127,665 are active. We use a production period 
of 15 years for the optimization. The economic parameters 
and additional optimization settings are listed in Table 2. 

 
Table 2. Economic parameters and additional optimization 
settings for the reservoir. 
Property Values Units 
Oil revenue 500 USD/m3 
Water production cost 10 USD/m3 
Water injection cost 10 USD/m3 
Well drilling cost 40000 USD/well 
Maximum production rate 120 m3/d 
Maximum injection rate 200 m3/d 
 
 

 
(a) log(Permeability), 103 µm2 

 
(b) Porosity 



Xiang Wang, Qihong Feng and Ronald D. Haynes/Journal of Engineering Science and Technology Review 8 (5) (2015) 134 - 140 

 138 

 
(c) Present oil saturation 

Fig. 2. Properties and wells of the mature reservoir. 
 
 
5.2 Results and Discussion 
The optimal number of infill wells, together with their 
locations, and the optimal injection/production rates of all 
wells are calculated by using the proposed framework.  
 For the reservoir, the number of existing wells existN  is 
146. The current well density aS  is 7.64 well/km2. The 
ultimate recovery η  is 0.4971 and the displacement 
efficiency oη  is 0.4982. According to Equation (3), 

 
17.640.4971 0.4982 ,ae

−− ×=                              (9) 
 

and thus a=0.0065. 
Substituting all the known parameters into Equation (4), 

we derive the following: 
 

1

4
1

4

0.0065
3740 10 500 0.4982 0.0065ln 2ln .

19.1 4 10

r

r

S

S

−

−

=
× × × × +

× ×

          (10) 

 
This equation provides the reasonable well density rS  of 

8.90 well/km2. 
The number of infill wells can then be calculated 

according to Equation (5) as follows: 
 
opt
infill 19.1 (8.90 7.64) 24.N = × − =                      (11) 

 
The reasonable production–injection well ratio is given 

R=1.21, as provided by the oil industry. We also find that the 
number of existing production wells exist ,oN =82 and the 

number of existing injection wells exist ,wN =64. Substituting 

these parameters into Equation (6), we obtain the following 
relation: 

 
infill,o

infill,w

82
1.21 .

64
N
N

+
=

+
                               (12) 

 
Considering that infill,o infill

opt
infill,w 24N N N+ = = , we can 

calculate the number of infill production wells, infill,oN =11 

and the number of infill injection wells, infill,wN =13. 
The optimized locations of infill wells were obtained by 

the well placement optimization phase of the framework as 
described in Section 3, and are provided in Figure 3, in 
which, black circles and triangles denote the existing 
production and injection wells, respectively. Red circles and 
triangles denote the infill production wells and infill 
injection wells, respectively. The base map is current oil 
saturation. The detailed location information of infill wells is 
shown in Table 3. The average distance between the 
artificially designed locations of infill wells and the 
optimized locations of infill wells is 84 m. 

The well rates were optimized by the well production 
optimization phase of the framework by solving the problem 
prescribed in Section 3. A visual comparison between the 
initial well rates and the optimized well rates is shown in 
Figure 4, where magenta and red bars denote the initial and 
optimized production rates of all the production wells, 
respectively. Cyan and blue bars denote the initial and 
optimized injection rates of all injection wells, respectively. 
The base map is current oil saturation. 

Figure 5 shows the performance of PSwarm algorithm 
for the well placement optimization for the placement of the 
infill wells and the well production optimization of all wells, 
respectively. PSwarm algorithm can solve this kind of large-
scale constrained optimization problem. 

The initial guesses for these two optimization problems 
are obtained from the adjustment plan provided by the oil 
industry. Figure 5(a) reveals that the traditional adjustment 
plan design given by petroleum engineers for this reservoir 
cannot ensure a good development output because of the 
extreme high water cut. For this mature field, the NPV is 
less than 0 when the unoptimized adjustment plan is used. 
The NPV significantly increases after well placement 
optimization and well production optimization are 
completed. The plot of cumulative oil production versus 
time is illustrated in Figure 6.  

 
 

 

 
Table 3. Artificially designed infill well locations and optimized locations. 
Infill well index I, original J, original I, optimized J, optimized Distance, m 

1 217 67 216 66 42.43 
2 218 78 217 75 94.87 
3 206 64 205 63 42.43 
4 207 72 209 70 84.85 
5 175 43 178 42 94.87 
6 186 76 183 73 127.28 
7 166 54 168 52 84.85 
8 174 75 173 72 94.87 
9 159 62 158 60 67.08 

10 147 49 144 49 90.00 
11 138 100 138 98 60.00 
12 134 88 131 85 127.28 
13 126 96 126 93 90.00 
14 125 83 124 86 94.87 
15 116 81 114 82 67.08 
16 103 105 105 104 67.08 
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17 109 31 112 29 108.17 
18 52 93 50 91 84.85 
19 58 27 56 27 60.00 
20 186 34 188 32 84.85 
21 173 30 176 32 108.17 
22 23 58 23 61 90.00 
23 78 66 80 64 84.85 
24 26 43 24 44 67.08 

 
 
 
 

 
Fig. 3. Optimized locations of infill wells for the reservoir.  
 
 

 
Fig. 4. Initial rates and optimized rates of all wells in the reservoir.  
 
 

 
 (a) well placement optimization  

 
 

 
(b) well production optimization     
Fig. 5. Performance of PSwarm algorithm for the well placement 
optimization of the infill wells and the well production optimization of 
all wells. 
 
 

 
Fig. 6. Plot of cumulative oil production versus time. 
 
 
5. Conclusions 

 
In this study, a computational framework was introduced to 
optimize the number of infill wells, the location of infill 
wells, and the production of all wells for a large-scale 
mature field. The framework decouples the joint complex 
optimization problem into three individual subproblems and 
solves these subproblems sequentially. This decoupling 
decreases the problem difficulty; as a result, optimization 
can be achieved for a large-scale field containing hundreds 
of wells. We also proposed the PSwarm algorithm, an 
efficient and robust derivative-free method that combines a 
pattern search and particle swarm optimization as the 
optimizer within the computational framework. The 
framework is applied to a full-scale mature oil field that 
includes nearly 200 wells. The results are compared with a 
current plan provided by the oil industry. The plan found by 
the optimization approach can obtain higher NPV and oil 
production than the current plan provided by the oil industry. 
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The computational framework has shown its potential in 
our work, but further research should be conducted. Future 
work should focus on exploring the performance of 
computational frameworks while iterating well placement 
optimization procedure and well control optimization 
procedure. Further studies should also simultaneously 
optimize the number of infill wells, the location of infill 
wells, and the control of all wells. 
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