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Abstract 
 

This paper presents the electric vehicle (EV) multiple charging station location-routing problem with time window to 
optimize the routing plan of capacitated EVs and the strategy of charging stations. In particular, the strategy of charging 
stations includes both infrastructure-type selection and station location decisions. The problem accounts for two critical 
constraints in logistic practice: the vehicle loading capacity and the customer time windows. A hybrid heuristic that 
incorporates an adaptive variable neighborhood search (AVNS) with the tabu search algorithm for intensification was 
developed to address the problem. The specialized neighborhood structures and the selection methods of charging station 
used in the shaking step of AVNS were proposed. In contrast to the commercial solver CPLEX, experimental results on 
small-scale test instances demonstrate that the algorithm can find nearly optimal solutions on small-scale instances. The 
results on large-scale instances also show the effectiveness of the algorithm. 
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1. Introduction 
 
With the increasing worldwide concern on the environment, 
the negative effects of logistic operations, particularly in 
terms of greenhouse gas emission, can no longer be 
neglected. Electric vehicles (EVs), powered by the 
reproducible resource, are currently considered to be a 
crucial alternative to conventional internal combustion 
vehicles (ICVs) to improve the sustainability of logistic 
operation. In contrast to ICVs, EVs have both environmental 
and economical advantages [1]. Several industries have 
started to use EVs for distribution operation in recent years, 
such as the consumer goods industry [2,3]. In addition, the 
logistic giant, DHL, has engaged more than 304 EVs for 
delivery activities and plans to adopt 140 EVs for delivery 
tasks in Bonn/Germany by 2016 [4]. 

In planning last-mile delivery task with EVs, the 
potential requirement of charging en route resulting from 
limited battery capacity should be rendered. Given the 
deficiency of public charging stations and the requests of 
logistic operations, such as time-definite deliveries, it’s 
regarded as a promising alternative that the logistic 
enterprise operates its own charging stations [6]. 

Several types of charging infrastructure exist in practice, 
and each has its pros and cons. For example, although the 
battery swap station (BSS) can provide faster service than 
other types of charging stations, the establishment cost of 
BSS is much higher than that of others [5]. The 
infrastructure-type decision of a station has a great effect on 

the location decision of the station and the routing plan of 
EVs, while it is swayed by the location of the station and 
routing plan. The location of the charging station also has a 
great influence on the routing plan of EVs, and the routing 
plan of EVs is a key factor to locate charging stations [6]. 
Thus, these three problems should be addressed 
simultaneously to obtain an optimal solution. Two 
constraints of last-mile delivery practice, that is, customer 
time windows and vehicle loading capacity, are also critical 
for the routing plan and should be incorporated into the 
problem [7]. The time window constraint is quite interesting 
because the recharging time for an EV is determined by both 
the charging infrastructure and the distance traveled from the 
last charging station, and the arrival time at the customer 
after a visit is affected by the charging time in the preceding 
station and is restricted by the time window. 

This study introduces the EV multiple charging station 
location-routing problem with time window (EV-MCS-
LRPTW). The problem incorporates the location decision 
and the type selection of charging infrastructure with the 
vehicle-routing plan，and considers customer time windows 
and the loading and battery capacities of vehicles. Each type 
of charging infrastructure is associated with a particular 
construction cost and charging rate. The problem is intended 
to provide an optimal solution with a minimal cost for the 
logistic enterprise that plans to adopt EVs for distribution 
and to construct its own charging stations. The problem 
minimizes the total cost, including the construction cost of 
the charging station, the charging cost of EVs, and the labor 
cost of drivers. Given that the problem extends the location-
routing problem (LRP), exact solution methods are 
incapable of addressing realistically sized instances within 
reasonable time periods [8]. Thus, we develop a hybrid 
heuristic named adaptive variable neighborhood search 
(AVNS)/tabu search (TS) to solve the problem, which 
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integrates an AVNS heuristic with the TS algorithm for 
intensification. The AVNS algorithm incorporates the 
adaptive idea from the adaptive large neighborhood search 
(ALNS) into the variable neighborhood search (VNS) 
framework to bias the random shaking phase of VNS. The 
performance of AVNS/TS is tested on several sets of 
instances in numerical studies. Experiments on small-scale 
instances are used to evaluate the solution quality of 
AVNS/TS, and tests on large-scale instances are adopted to 
assess the effectiveness of the algorithm. 

The remainder of this paper is organized as follows: 
Section 2 briefly reviews the literature related to EV-MCS-
LRPTW. Section 3 illustrates the mathematical formulation 
of the problem. Section 4 provides the solution approach. 
Section 5 demonstrates the parameter setting, the generation 
of new E-MCS-LRPTW instances, and the numerical studies. 
Finally, Section 6 concludes the study and summarizes the 
future works. 
 
 
2. Related background 
 
In this section, we review the literature related to EV-MCS-
LRPTW. Two streams of previous studies are most relevant 
to the present research. One is the LRP, and the other is the 
routing planning of alternative fuel vehicles (AFVs). 
 
2.1 Location routing problem 
A network is normally represented by a graph that is 
composed of a set of nodes and edges. The task of network 
clustering is to divide a network into different clusters based 
on certain principles. Each cluster is called a community. 
The LRP combines two classical planning tasks in logistics, 
that is, optimally locating depots and planning vehicle routes 
from these depots to geographically scattered customers [8]. 
These two interdependent problems have been addressed 
separately for a long time, which often leads to suboptimal 
planning results. The idea of LRP started in the 1960s, when 
the interdependence of the two problems was pointed out 
[9,10]. The variants of the LRP have been frequently studied 
in recent years. Such variants include the capacitated LRP 
(CLRP) with constraints on depots and vehicles [20,21], the 
LRP with multi-echelon of networks [11,12], the LRP with 
inventory management [13,14], and the LRP with service 
time windows [15–17]. For the variant problem with time 
windows, Semet and Taillard incorporated the time window 
constraint to the LRP for a special case of the road–train-
routing problem [15]. Zarandi et al. studied the CLRP with 
fuzzy travel time and customer time windows, in which a 
fuzzy chance-constrained mathematical program was used to 
model the problem [16]. Later, they extended the problem by 
adding the fuzzy demands of customers and developed a 
cluster-first route-second heuristic to solve the problem [17]. 
A detailed review of the LRP variants can be found in two 
recent surveys [18,19].  

For the solution method of LRP, studies that focus more 
on heuristics than on exact methods have been observed in 
the existing literature probably, because the LRP combines 
two nondeterministic polynomial-time-hard problems. Most 
of the heuristic methods can be classified into two categories. 
One category commonly applies modified metaheuristics to 
improve the initial solution generated in a previous step. For 
instance, to solve the CLRP, Jokar and Sahraeian first 
applied a greedy approach to produce an initial solution and 
then proposed the simulated annealing (SA) algorithm to 
exploit better solutions from the initial solution [20]. 

Hemmelymay et al. applied their ALNS metaheuristic 
enhanced by a local search algorithm in improving the initial 
solution to address the CLRP [21]. The other category is 
executed first by separating the LRP into two sub-
problems—the vehicle-routing problem (VRP) and the 
facility location problem—and then by solving the sub-
problems sequentially or iteratively. Perl and Daskin first 
proposed the idea of iterating between locational and routing 
phases, and the idea has been improved in several studies 
later [22]. 
 
2.2 Routing problem of alternative fuel vehicles 
The second strand of the relevant literature consists of the 
routing problems that consider the limited driving range of 
vehicles and the possibility of refueling en route. Conrad and 
Figliozzi introduced the recharging VRP, in which vehicles 
with a limited range are allowed to recharge at certain 
customer stations within a fixed time [23]. Erdogan and 
Miller-Hookers presented the green VRP (G-VRP) for 
routing AFVs and solved the problem with two algorithms. 
In G-VRP, refueling stations are assumed to be independent 
of customer sites, and an AFV may refuel at these stations 
within a fixed time [24]. Later, Schneider et al. incorporated 
the time window constraint into the G-VRP and proposed 
the EV-routing problem with time windows and recharging 
station (E-VRPTW) [7]. The charging time in E-VRPTW is 
not fixed but instead is related to the battery charge of an EV 
upon arrival at the station. To address the problem, they 
developed a hybrid heuristic that combines the VNS with the 
TS algorithm (VNS/TS). Schneider et al. then introduced the 
VRP with intermediate stops (VRPIS), which generalized 
the G-VRP, and solved the problem by AVNS [29]. Five 
route selection methods and three vertex sequence selection 
methods were utilized in the adaptive shaking phase of 
AVNS. Felipe et al. proposed several heuristics to address 
the G-VRP with multiple technologies and partial recharges. 
The problem extends the G-VRP by incorporating different 
technologies for battery recharge and the possibility of 
partial recharges [25]. Goeke and Schneider combined the E-
VRPTW with a mixed fleet of EVs and ICVs, and utilized 
realistic energy consumption functions in their problem [26]. 
The resulting problem was solved by an ALNS with a local 
search for intensification. Yang and Sun adopted the 
simultaneous optimization idea from the LRP to the context 
of EV and proposed the BSS location-routing problem of 
EVs [6]. The problem is intended to minimize infrastructure 
and shipping costs by determining the station location and 
vehicle-routing plan jointly under a driving range limitation. 
For the solution method, they employed the concept of 
solving separate sub-problems iteratively from the LRP and 
proposed two hybrid heuristics [22]. In detail, one algorithm 
called TS-modified Clarke–Wright saving (MCWS) 
combines the TS algorithm for location strategy and the 
MCWS method for the routing decision. The other approach 
named SIGALNS includes four main phases: initialization, 
location sub-problem, routing sub-problem, and 
improvement. Iterative greedy (IG) is utilized in the location 
phase, and an ALNS in the routing phase. 

Most of the existing studies on logistic operation with 
EVs focus on the routing plan of vehicles with fixed 
charging stations. However, for a logistic company that 
plans to construct its own charging stations to support 
distribution tasks, the strategy of charging stations and 
routing plan are both critical to obtain an optimal solution. 
To the best of our knowledge, the problem studied by Yang 
et al. is the closest to the EV-MCS-LRPTW defined in the 
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present study. However, several fundamental differences 
exist between the two problems. First, their problem 
considers BSS to be the only type of charging infrastructure, 
whereas several types of infrastructure with distinct charging 
rates, construction costs, and electricity prices are regarded 
in the present research. The type selection of infrastructure is 
also optimized, along with the location decision and routing 
plan in our problem. Previous studies have implied that, 
aside from BSS, other types of charging infrastructure are 
frequently utilized in practice [5,25]. As illustrated before, 
each type of charging station has its cons and pros. Thus, the 
type selection is worthwhile to incorporate into the problem. 
Furthermore, the EV-MCS-LRPTW incorporates a critical 
constraint in real-world practice, the service time window, 
which has a strong effect on both the routing plan and type 
selection. Given that various types of stations are allowed in 
this work, the components considered in the objective 
function of EV-MCS-LRPTW are different from those in 
their work. Instead of shipping cost, driver wage and 
charging cost are tackled with the construction cost in the 
objective function evaluated in this study. 
 
 
3. Mathematical model 

 
The EV-MCS-LRPTW is defined in a complete, directed 
graph ( , )G V A= . Set C  denotes the set of customers, and 
set R  denotes the set of candidate charging station sites. In 
particular, when a candidate station is at a customer site, the 
candidate station is treated as a dummy vertex of the 
customer site. The dummy vertex belongs to the set of 
candidate station sites, R , but shares the same location 
features as the customer. One single depot is considered in 
this problem and is denoted by vertices o  and 'o , where all 
the routes start from o  and end at 'o . Set V  consists of sets 
C , R , and both instances of the depot. The set of arcs is 
given by {( , ) | , , }A i j i j V i j= ∈ ≠ . A charging station is 
assumed to be located at the depot, in which each EV should 
be fully charged to battery capacity Q  when it returns for 
fairness of comparison. 

Each customer vertex i  is characterized by a 
nonnegative demand iq , a fixed service time is , and a time 
window [ , ]i ie l . The demand iq  is assumed to be within the 
loading capacity U . Each candidate site i R∈  is provided 
with Λ  types of charging stations as options. Each 
infrastructure type Λr∈  is associated with the construction 
cost r

ic , constant charging rate rλ , and electricity price r
ec . 

The construction cost r
ic  is determined by both type and 

location. Upon each visit to a station site i R∈ , a vehicle k  
is assumed to be fully charged with the charging time k

iθ . 

The charging time k
iθ  is based on both the charging rate and 

the charge level of the vehicle upon arrival at the station. 
Each arc is associated with distance ijd  and travel time ijt . 
The electricity consumption rate of a vehicle is assumed to 
be a constant ε . A fleet of identical EVs is considered in 
this work. 

EV-MCS-LRPTW is formulated as a mixed-integer 
programming model. The binary variable r

iy  defines 
whether or not to locate a type r  charging station at a 
candidate site i R∈ . For every arc ( , )i j A∈ , the binary 

decision variable k
ijx  takes the value of 1 when an arc 

( , )i j A∈  is traveled by vehicle k  and takes the value of 0 

otherwise. The variable k
iτ  denotes the arrival time, k

iu

 

 

denotes the remaining load, and k
iaf  denotes the remaining 

charge level of vehicle k  upon arrival at vertex i V∈ . The 
variable k

if  specifies the charging amount of vehicle k  at 
vertex i R∈ .  

Given the definitions of parameters and variables, the 
mathematical model is defined as follows: 
Minimize 
 

{ } { }
'

' Λ ' Λ

r r k r r k
i i i e i d o

i R o r k K i R o r k K
f c y f c y c τ

∈ ∪ ∈ ∈ ∈ ∪ ∈ ∈

= ⋅ + ⋅ ⋅ + ⋅∑ ∑ ∑ ∑ ∑ ∑     (1) 

 
Subject to 

/{ '},
1k

jij V o j i k K
x

∈ ≠ ∈
=∑ ∑   i C∀ ∈                                        (2) 

 
\{ },i j \{ '},i j

0k k
ij jij V o j V o
x x

∈ ≠ ∈ ≠
− =∑ ∑                                           

                                               \{ , '},i V o o k K∀ ∈ ∀ ∈        (3) 
 

\{ }
1k

ojj V o
x

∈
=∑   k K∀ ∈                                                       (4) 

 
'\{ } \{ '}
0k k

oj joj V o j V o
x x

∈ ∈
− =∑ ∑   k K∀ ∈                               (5) 

 
( 1) (1 )k k k k k
ij j i i ij ijU x u u q x U x⋅ − ≤ − + ⋅ ≤ ⋅ −                            

                        \{ '}, \{ }, ,i V o j V o i j k K∀ ∈ ∀ ∈ ≠ ∀ ∈       (6) 
 

0k
iu ≥    \{ '},i V o k K∀ ∈ ∀ ∈                                             (7) 

 
0
ku U≤   k K∀ ∈                                                                   (8) 

 
( 1) ( ) (1 )k k k k k k
ij ja ia i ij ij ijQ x f f f ε d x Q x⋅ − ≤ − + + ⋅ ⋅ ≤ ⋅ −               

                          \{ '}, \{ }, ,i V o j V o i j k K∀ ∈ ∀ ∈ ≠ ∀ ∈       (9) 
 

k
oaf Q=   k K∀ ∈                                                                (10) 

 

Λ
( ) ( )k k r

i ia ir
f Q f y

∈
= − ⋅∑   { '},i R o k K∀ ∈ ∀ ∈U             (11) 

 

Λ
1r

ir
y

∈
≤∑   { '}i R o∀ ∈ U                                                 (12) 

 

Λ
( )k k r r

i i ir
f θ y λ

∈
= ⋅ ⋅∑   { '},i R o k K∀ ∈ ∀ ∈U               (13) 

 
0k

if =   ,i C k K∀ ∈ ∀ ∈                                                     (14) 
 

0k
iaf ≥   ,i V k K∀ ∈ ∀ ∈                                                      (15) 

 
(1 )k k k k k k

i ij ij i ij i ij jτ t x s x τ x τ+ ⋅ + ⋅ − ⋅ − ≤                                 
                               { }, \{ },i C o j V o k K∀ ∈ ∀ ∈ ∀ ∈U      (16) 

 
(1 )k k k k k k
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                                 , \ { },i R j V o k K∀ ∈ ∀ ∈ ∀ ∈      (17) 
 

k
i i ie τ l≤ ≤   { ', },i V o o k K∀ ∈ ∀ ∈U                                  (18) 

 
{0,1}r

iy ∈   , Λi R r∀ ∈ ∀ ∈                                                  (19) 
 

{0,1}k
ijx ∈   \{ '}, \{ }, ,i V o j V o i j k K∀ ∈ ∀ ∈ ≠ ∀ ∈            (20) 

 
0k

if ≥   ,i V k K∀ ∈ ∀ ∈                                                      (21) 
 

Objective function (1) minimizes a mixed cost, where 
the first term denotes the construction cost of charging 
stations, the second term the cost of electricity recharged at 
depot and stations, and the third term the diver wage 
associated with working time. Constraints (2) guarantee that 
each customer is visited exactly once. Constraints (3) ensure 
that the number of incoming arcs is equal to that of outgoing 
arcs for each vertex, except for the instances of the depot. 
Constraints (4) and (5) ensure that all the employed vehicles 
start and end routes at the depot. Constraints (6) and (7) 
enforce the fulfillment of demands at customer nodes, and 
Constraints (8) restrict the initial cargo load level of a 
vehicle to its capacity. Constraints (9) link the battery levels 
of the vehicle at the vertices i  and j  of a traveled arc ( , )i j . 
Both Constraints (6) and (9) adopt the idea from the big-M 
method. Constraints (10) and (11) ensure that each vehicle 
leaves the depot or a located station with a fully charged 
battery. Constraints (12) confine the type of infrastructure 
located at a candidate site to be one. Constraints (13) define 
the simplified relationship between charging time and 
charging amount at located charging stations. Constraints 
(14) prevent a vehicle from charging at a vertex from a 
customer set. Constraints (15) guarantee that each vehicle 
has sufficient power to reach a located station or depot. 
Constraints (16) and (17) establish the relation between 
arrival times at vertices i  and j  if the arc ( , )i j  is traveled. 
Constraints (17) particularly cover the condition, where the 
arc ( , )i j  starts with a charging station. Constraints (18) 
ensure that all customer vertices are visited within their time 
windows. Constraints (19) to (21) define the natural features 
of the variables. 
 
 
4. Proposed method for EV-MCS-LRPTW 

 
In this section, a hybrid heuristic that integrates AVNS with 
TS for intensification is proposed to address the problem. 
The approach is inspired by VNS/TS, a combination of VNS 
and TS, which has demonstrated its quality on several 
routing problems [7,27]. AVNS, which was proposed by 
Stenger et al. in 2012, is an approach that integrates the 
adaptive concept from ALNS into the route and customer 
selection in the shaking phase of VNS. AVNS has 
successfully been applied in several combinatorial 
optimization problems, including the multi-depot VRP with 
private fleet and common carriers, and the VRPIS [28,29]. 
TS is a renowned metaheuristic that guides a local search to 
explore the solution space beyond local optimality [30]. The 
approach is often associated with diversification and 
intensification mechanisms to obtain effective algorithms. 
 
Algorithm 1 Pseudocode of the AVNS/TS. 

preprocessArcList() 
()s generateIntialSolution←  

κN ← set of AVNS neighborhood structures for  

max1,...,κ κ=  
1κ←  

repeat 
a) {Adaptive Shaking} 

Choose the selection method and generate 
' ( )κS N S∈  

b) {Tabu search} 
'' ( ')S applyTabuSearch S←  

c) '''S ← applyImprovementProcedure ( '')S  
d) if accept ( '', )S S  then 

i. ''S S←  
ii. 1κ←  

e) else 
i. max( mod ) 1κ κ κ← +  

f) end if 
g) Update weight of the selection method 

until termination criterion is met 
 

Algorithm 1 presents an overview of AVNS/TS in 
pseudocode. The algorithm starts with a series of 
preprocessing procedures (Section 4.1). An initial solution 
0S with a given number of vehicles is then generated 

(Section 4.3). Infeasible solutions are allowed during the 
search, and a penalty mechanism is applied to measure the 
violations (Section 4.2). The initial solution is iteratively 
improved by AVNS, TS, and an improvement procedure. In 
detail, the AVNS is mainly used to diversify the search 
based on the predefined neighborhood structures (Section 
4.4). The solution from the AVNS phase, 'S , is then served 
as an input and processed in the TS step (Section 4.5). An 
improvement procedure is finally executed on the solution, 
''S , from TS to find an advanced one,   (Section 4.6). The 

solution '''S  is eventually evaluated by an acceptance 
criterion based on SA (Section 4.7). 
 
4.1 Preprocessing procedure 
In the first step, the preprocessing procedure removes the 
infeasible arcs. An arc ( , )v w  is regarded as infeasible if one 
of the conditions defined in Eqs. (22) to (24) holds. In detail, 
Eq. (22) addresses the violation of loading capacity, and Eqs. 
(23) and (24) address the violation of time windows [31]. 
 
, v wv w V q q U∈ ∧ + >                                                         (22) 

 
{ }, { '} s

v v vw wv V o w V o e t t l∈ ∈ ∧ + + >U U                          (23) 
 

{ }, s
v v vw wv V o w V e t t l∈ ∈ ∧ + + >U                                    (24) 

 
Given that each candidate site is assigned multiple types 

of infrastructure for selection, the second step of the 
procedure, called station vertex preprocessing, splits each 
candidate station site into various dummy vertices to 
simplify the calculation. Figure 1 gives a graphical 
illustration of the process. Before this preprocessing step, a 
candidate station site i  is associated with Λ  types of 
charging infrastructures, in which each type has its distinct 
construction cost, charging rate, and electricity price. After 
the procedure, the candidate site i  is replaced with Λ  
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dummy vertices, as shown in the lower part of the figure, 
where each dummy vertex denotes a station site with only 
one type of infrastructure in the same place as the vertex i . 

 
Fig. 1.  Graphical illustration of station vertex preprocessing  
 
 
4.2 Penalty calculation 
The AVNS/TS algorithm allows the violation of certain 
constraints during the search. The violation is reflected as 
the penalized cost in a generalized objective function. This 
section introduces the penalized cost generated from the 
violations of loading capacity, battery capacity, and time 
window. Let a sequence of vertices 0 1 1, ,..., ,n nv v v v +  

represent a route r , where vertices 0v  and 1nv +  denote the 
instances of depot. The routing plan of solution S  can be 
presented as { , 1,2,..., }kS r k m= = . Then the capacity 
violation of a route r  can be calculated as 

 
1

0
( ) max{ ,0}

i

n
cap vi
L r q C+

=
= −∑                                            (25) 

 
 The total capacity penalty of a solution is computed by 
summing up the violations of all routes: 
 

1
( ) ( )m

cap cap ki
L S L r

=
=∑                                                         (26) 

 
Similar to the approach in E-VRPTW, the variable 

iv
→ϒ   

is defined to track the electricity usage of a vehicle at each 
vertex of its route 0 1 1, ,..., ,n nr v v v v +=  to compute battery 

capacity violation [7]. 
iv
→ϒ  records the accumulated 

electricity consumption from the last charging station or 
depot (see Eq. (27)). The variable 

iv
P  represents the 

feasibility state of the vehicle at each vertex. If a vehicle 
violates the battery capacity Q  at vertex iv , then 

iv
P  is set 

as the excess electricity amount at that vertex; otherwise, 
iv
P  

is equal to 0 (see Eq. (28)).  
 

1

1 1

1

1 /
i i

i

i i i

v v i
v

v v v i

d if v R

d if v V R

ε
ε

−

− −

−→
→

−

⋅ ∈⎧⎪ϒ = ⎨ϒ + ⋅ ∈⎪⎩
 {1,2,..., 1}i n∈ +   (27) 

 
max{ ,0}

i iv vP Q→= ϒ −  {1,2,..., 1}i n∈ +                               (28) 
 

Given the definition of 
iv
P , the battery capacity violation 

of a route r  is calculated by summing up the vehicle excess 
consumption amount at every station en route and upon 
return to the depot (see Eq. (29)). The battery capacity 
penalty of a solution S  is then presented as the total of the 
violations of all routes (see Eq. (30)).  
 

{o'}
( )

ii
bat vv R
L r P

∈ ∪
=∑                                                         (29) 

 

1
(S) ( )m

bat bat kk
L L r

=
=∑                                                         (30) 

 
In this work, the time window is calculated based on the 

methodology developed by Nagata et al. and enhanced by 
Schneider et al. [32,33]. The principle of the approach is to 
count the penalty on the vertex where the violation occurs, 
instead of propagating the violation along the entire route. 
For the consecutive vertices of that vertex, the approach 
assumes that the vehicle can travel back in time and start 
service at the latest feasible moment in the violation vertex. 

In the VRPTW, the approach can calculate the time 
window penalty ( )twL r  for conventional inter-route moves 
at constant time. However, given that the charging time of a 
vehicle is related to the traveled distance, recalculation is 
necessary in certain situations. As in the E-VRPTW by 
Schneider and Stenger, we adopt the methodology with 
modification in this work [7]. Let 0 1,..., , , ,..., nr v u v w v +=  
be a route that is generated by combining the two partial 
routes 0,..., ,v u v  and 1,..., ,n nw v v + . If the second partial 
route contains a charging station z , that is, 

1,..., , 1,... nw z z v ++ , then the variables should be 

recalculated for segment ,..., 1w z + . Similarly, in the case 

of vertex insertion, in which route 0 1,..., , , ,..., nr v u v w v +=  

is formed by inserting vertex v  to route 0 1,..., , ,..., nv u w v + , 

recalculation is required for segment ,..., 1v z +  if the 

partial route 1,..., ,n nw v v +  includes a charging station z .  
 

4.3 Generation of initial solution 
We split the problem into the routing sub-problem and the 
station location sub-problem and solve them in sequence to 
generate the initial solution. In the routing sub-problem, the 
battery capacity of the vehicle is neglected, and no station is 
considered. The violations of capacity and time windows are 
also transformed into the penalized costs in the objective 
function (see Eq. (31)). The generalized cost functions 
include the routing-related costs in the original objective 
function and the penalized costs caused by the loading 
capacity violation ( )capL S  and time window violation 

( )twL S  The latter two costs are scaled by the penalty factors 

capβ  and twβ  , respectively. In this step, the initial values 
0
capβ  and 0

twβ  are assigned to the two factors accordingly. 
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'{o'}
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The solution of the routing problem is generated with m  

routes, where m  is the maximum number of vehicles. Each 
route is initialized with a seed customer. The seed customer 
is selected according to the rank of the latest service start 
time. The remaining customers are then iteratively inserted 
into the active routes at the position that causes minimal 
increase in the generalized cost ( )routingf S , until no customer 
is left. 

After the initial routes are determined, the feasibility of 
the solution is further improved in terms of battery capacity 
constraint. For each infeasible route 0 1 1, ,...,k nr v v v += , a 
charging station is iteratively inserted into the route before 
the first breaking vertex jv , which is defined as the vertex 
that first violates the battery capacity in the route [6]. In 
general, a vehicle is not assumed to visit a charging station 
immediately after a visit to another station or depot. Thus, 
the position where a station should be inserted can be 
narrowed to a segment of the route. The segment of the route, 
denoted by set jL , is the sequence of vertices that ends with 

the first breaking vertex jv  and starts from the preceding 

station or depot. For each vertex in the segment j jv L∈ , an 
attainable station set is created based on the remaining 
battery amount 

g gv vR Q →= − ϒ  at the vertex gv , that is, 

'{ | }
gg h

g vv v
T w w R d ε R= ∈ ∧ ⋅ ≤ . The vertex with an empty 

attainable station set is removed from the set jL . Given the 

attainable set gT  of each vertex gv  in jL , a set that contains 

all the reachable stations of the segment jL can be generated, 

that is, Η( ) { | }j g g jL h h T v L= ∈ ∧ ∈ . The vertices in the set 
are first ranked in ascending order of construction costs, and 
the vertex *h  indexed as 1

1 | |ρ
jL⎢ ⎥ϖ⎣ ⎦  is then selected to find 

the proper station from ( )jLΗ . Specifically, 1
1 | |jL
ρϖ⎢ ⎥⎣ ⎦  is 

used to introduce randomness, where 1ϖ  is a random 
number between 0 and 1, and 1 1ρ ≥  is a constant parameter 
and is equal to 10 in this work [6]. After the selected station 
is inserted, the feasibility state of route kr  is updated. The 
construction cost of the inserted located station is first 
recorded as zero to avoid over-counting, because a station 
may serve multiple routes. For each infeasible route, these 
steps are repeated until the route is feasible in terms of 
battery driving limitation.  

 
4.4 Adaptive variable search component 
In this phase, infeasible solutions are also allowed during the 
search. However, a new generalized objective function is 
utilized in this phase because both the routing and location 
problems are considered. The generalized objective function, 
defined in Eq. (32), integrates the initial objective function 
and the penalized costs caused by the loading capacity, time 
window, and battery capacity violations. As illustrated in 
Section 4.3, capβ , twβ , and batβ  represent the penalty 
factors weighting the violations. These factors are initialized 
with 0 0 0( , , )cap tw batβ β β  and adjusted based on the violation 

status in a predefined number of iteration time penη . In 

detail, if the loading capacity constraint is violated for penη  

iterations, the factor for capacity capβ  is multiplied with a 
factor α . In an analogous manner, the factor is divided by a 
factor α , if the capacity constraint is met for penη  iterations. 

The same mechanism is applied for twβ  and batβ . The 
factors, capβ , and twβ  are batβ  also restricted between the 

lower bound min min min( , , )cap tw batβ β β  and the upper bound 
max max max( , , )cap tw batβ β β  during the process.  

 
( ) ( ) (S) (S) (S)AVNS bat cap tw tw bat batf S f S L L Lβ β β= + ⋅ + ⋅ + ⋅ (32) 

 
4.4.1 Shaking neighborhood structures 
The choice of neighborhood structures is critical for the 
solution quality. For EV-MCS-LRPTW, five operators are 
used to define the neighborhood structures in the shaking 
step. Among the five operators, two are the acknowledged 
cyclic-exchange and move-neighborhood operators [34], and 
the other three are problem-specific operators named the 
station-reconstruct, station-relocate, and station-exchange 
operators. The cyclic-exchange operator swaps the customer 
sequences of an arbitrary length among the routes 
simultaneously. This operator is characterized by the number 
of routes involved, Ω , and the maximum length of the 
sequence to exchange, maxΓ , which is denoted as the number 
of vertices. In detail, the cyclic-exchange operator transfers a 
vertex sequence 

, k
k

k
j

H
Γ

 with the start point kj  and length 
kΓ  in route k  to route 1k +  at the former position of 

sequence 1
1

1
, k

k

k
j

H +
+

+
Γ

. If the number of existing routes is less 

than the number of routes to cycle, then the value of Ω  is 
reduced accordingly. If the maximum length maxΓ  exceeds 
the length of route k , denoted by | V |k , then the actual 

sequence length to exchange kΓ  is to be adjusted to a 
random number in the interval max0,min( ,| V |)k⎡ ⎤Γ⎣ ⎦ . An 

example of a cyclic-exchange operator with three routes is 
shown in Figure 2. The move-neighborhood operator can be 
regarded as a special form of cyclic-exchange operator. This 
operator moves the vertex sequence from one route to 
another, while no vertex is relocated from the second route.  

 
Fig. 2. Graphical illustration of a cyclic-exchange move  
 

The station-reconstruct operator is executed on the 
charging stations. For a selected route, station-reconstruct 
first removes all located stations and then inserts certain 
stations back to make the route feasible in terms of battery 
capacity. The approach of inserting stations is similar to the 
generation of the initial solution. The only difference lies in 
the guidance metrics. The decision in the station-reconstruct 
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operator is guided by the generalized objective function of 
the solution ( )AVNSf S , instead of the construction cost in the 
generation of the initial solution. Each station h  in the 
reachable set of the route segment ( )jLΗ  is sorted in 
ascending order of the objective function value of the 
resulting solution ( )AVNSf S h← , in which station  is inserted. 

The station indexed as 2
2 | ( ) |jH Lρϖ⎢ ⎥⎣ ⎦  is then selected, 

where 2ϖ  and 2ρ  are defined the same as 1ϖ  and 1ρ , 
respectively. After the selected station is located, the 
feasibility state of the route is updated. For the selected route, 
station-reconstruct repeats the preceding steps until the route 
becomes feasible in terms of battery driving limitation. 
 

 
Fig. 3.  Graphical illustration of the neighboring station set 
 

Station-relocate replaces a current station with an un-
located one in its neighboring station set. The neighboring 
station set of a located station is the set of stations that can 
replace the located one without affecting the feasibility of 
the solution regarding battery capacity. We provide a simple 
example in Figure 3 to better illustrate the neighboring set. 
The neighboring station set of the located station A can be 
determined as follows: Station A is removed from the route, 
and the separated vertices, 2v  and 3v , are directly connected. 
The first breaking vertex in the resulting route, which is 
vertex 4v , is found. The route segment before the first 
breaking vertex after the depot or a preceding station, which 
is 1 2 3{ , , }v v v , is identified, and the reachable set of the 
segment, which is { , , , , , , }A B C D E F G , is determined. The 
neighboring station of station A is the reachable set of the 
route segment excluding itself, that is, 
( ) { , , , , , }N A B C D E F G= . The neighboring set can further 

be divided into two sets ( )openN A  and ( )unopenN A  based on 
whether or not the stations in the neighboring set are located. 
After obtaining un-located stations in the neighboring set 

( )unopenN A , the station-relocate operator ranks the stations in 

the set ( )unopenN A  in ascending order of objective function 

value of the resulting solution ( ')AVNSf S  and replaces the 

station with the one indexed by 3
3 | ( ) |unopenN wρϖ⎢ ⎥⎣ ⎦ , where 

3ϖ  and 3ρ  are defined the same as 1ϖ  and 1ρ , respectively. 
The station-exchange operator substitutes the current station 
with a located one in its neighboring station set, and the 
implementation is the same as in the station-relocate 
operator, but with set ( )openN A . 

Table 1 presents the neighborhood structures based on 
the five operators within the shaking step of AVNS. The 
first nine structures consist of six move-neighborhoods, 
followed by one station-reconstruct, one station-relocate, 

and one station-exchange. The three sets of neighborhood 
structures that comprise six cyclic-exchanges, one station-
reconstruct, one station-relocate, and one station-exchange 
are presented from rows 10 to 18, 19 to 27, and 28 to 36. 
The number of routes involved Ω  is not relevant for 
station-relocate and station-exchange but stands for the 
involved routes in station-reconstruct. The maximum length 
to exchange maxΓ  in station-relocate and station-exchange 
represents the maximum number of charging stations to be 
relocated or exchanged, but it is irrelevant to station-
reconstruct. Other rules of Ω  and maxΓ  are also applicable 
to problem-specific operators. 

 
4.4.2 Adaptive shaking 
The AVNS in this work applies selection approaches in 
biasing the route, vertex sequence, and station selection 
involved in the shaking step to find promising solutions. The 
located station selection methods are newly designed for the 
problem, and the route and vertex sequence selection 
methods are similar to those in the VRPIS studied by 
Schneider et al. [29]. 

Route selection methods: Five selection methods are 
adopted to determine the first route in the subset of Ω  
routes that is involved in cyclic-exchange and station-
reconstruct. The selection is performed in an iterative way; 

Table 1. Parameters of the four real-world networks 
κ  Type Ω  maxΓ  
1 Move-neighborhood 2 1 
2 Move-neighborhood 2 2 
3 Move-neighborhood 2 3 
4 Move-neighborhood 2 4 
5 Move-neighborhood 2 5 
6 Move-neighborhood 2 6 
7 Station-reconstruct 1 - 
8 Station-relocate - 1 
9 Station-exchange - 1 
10 Cyclic-exchange 2 1 
11 Cyclic-exchange 2 2 
12 Cyclic-exchange 2 3 
13 Cyclic-exchange 2 4 
14 Cyclic-exchange 2 5 
15 Cyclic-exchange 2 6 
16 Station-reconstruct 2 - 
17 Station-relocate - 2 
18 Station-exchange - 2 
19 Cyclic-exchange 3 1 
20 Cyclic-exchange 3 2 
21 Cyclic-exchange 3 3 
22 Cyclic-exchange 3 4 
23 Cyclic-exchange 3 5 
24 Cyclic-exchange 3 6 
25 Station-reconstruct 3 - 
26 Station-relocate - 3 
27 Station-exchange - 2 
28 Cyclic-exchange 4 1 
29 Cyclic-exchange 4 2 
30 Cyclic-exchange 4 3 
31 Cyclic-exchange 4 4 
32 Cyclic-exchange 4 5 
33 Cyclic-exchange 4 6 
34 Station-reconstruct 4  
35 Station-relocate - 4 
36 Station-exchange - 2 
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that is, after selecting the first route, the remaining routes are 
iteratively selected from the routes that are spatially closer 
than a predefined threshold   to the recently selected route. If 
no route is available in the confined area, the next route is to 
be randomly selected among all the routes. The selection 
mechanisms adopted to determine the first route are as 
follows: 

1) Random: The probability of selecting each route 
has no difference. 

2) Route length: The probability of selecting each 
route is proportional to the total length of the route.  

3) Route length per demand unit: The probability of 
selecting each route is proportional to the ratio between total 
length and total demand.  

4) Station density: The probability of selecting each 
route is proportional to the ratio of the number of stations to 
the number of total customers on the route. 

5) Station detour: The probability of selecting each 
route is proportional to the total detour caused by the 
charging station of the route.  

 
Vertex sequence selection methods: After the routes 

involved in cyclic-exchange are selected, the vertex 
sequence in each route is determined according to the 
following three mechanisms: 

1) Random: The probability of selecting each vertex 
sequence has no difference.  

2) Distance to the next route: The probability of 
selecting each vertex sequence is inversely proportional to 
the distance from the sequence to the route where it is going 
to be inserted. The distance is measured by summing up the 
distance of each vertex in the sequence to the center of the 
target route.  

3) Distance to the neighboring vertex sequence: The 
probability of selecting each vertex sequence is proportional 
to the distance of the sequence to its surrounding vertices. 
The distance is calculated as the sum of the distance between 
the first vertex and its predecessor and that between the last 
vertex and its successor.  

 
Station selection methods: Four selection approaches are 

proposed to select the located station. In particular, methods 
1, 2, and 3 are used to select the to-be-replaced stations in 
the station-relocate operator, and methods 1, 2, and 4 are 
used to determine the stations in the station-exchange 
operator.  

1) Random: The probability of selecting each station 
has no difference. 

2) Number of related routes: The probability of 
selecting each station is proportional to the number of routes 
in the station services.  

3) Number of neighboring un-located stations. The 
probability of selecting each station is proportional to the 
number of un-located stations in the neighboring station set. 

4) Number of neighboring located stations. The 
probability of selecting each station is proportional to the 
number of located stations in the neighboring station set. 

 
4.4.3 Adaptive mechanism 
Given that the performance of each selection method differs 
across different problems, we apply the roulette wheel 
selection method to bias the selection of these methods 
based on probabilities [35]. As in ALNS, an adaptive 
mechanism is utilized in AVNS to assess the importance of 
selection methods by updating their probabilities. 
Considering a total of s  selection methods, 1,2,...,i s= , 

each method is associated with a weight iω , and the 
probability of selecting the method i  is given by 

1

s
i jj

ω ω
=∑ . The weight of each selection method iω  is 

initialized with an equal weight at the beginning and updated 
every AVNSη  AVNS iteration based on its performance. The 
performance of each method is measured by a scoring 
system, which assigns a score of nine to the method when a 
new overall best solution is found by the method, a score of 
three when the current solution is improved, and a score of 
one when the solution is worse than the current solution but 
is accepted by the acceptance criterion. Given the current 
score of method i , denoted by is , and the number of times 
it has been selected since the last weight update, denoted by 
iz , the new weight is then recalculated as 

(1 ) ( )i adp adp i is zω ρ ρ⋅ − + ⋅ . [0,1]adpρ ∈  is a parameter 

that controls the adaptive behavior, and is , iz  are reset to 
zero after each weight update. 

 
4.5 Tabu search component 
The TS algorithm is applied to improve the routing plans in 
the solution 'S  generated from the AVNS phase. In every 
iteration, four operators are executed on the arc in the list of 
generator arcs to develop the neighborhood of the TS. The 
four operators are composed of three well-known operators, 
2-opt*, relocate, exchange, and one problem-specific 
operator, StationInRe [22,36,37] . As is commonly done in 
the content of VRP, the TS algorithm regards a move as 
superior if the move can reduce the number of employed 
vehicles or has a better function value calculated with Eq. 
(42). In detail, the 2-opt* operator modifies the famous 2-opt 
to avoid the reversal of route directions. This operator is 
implemented for inter-route moves and allows the removal 
and insertion of the arc that includes a station visit. The 
relocate operator removes one vertex and inserts it into a 
different position on the same route or another route. The 
exchange operator switches the positions of the two vertices. 
Both relocate and exchange are applied for intra- and inter-
route moves. However, the swapping of a station with a 
customer or another station is defined only for relocate. 
StationReIn is introduced to solve E-VRPTW, and it 
performs insertion and removals of charging stations. 

The TS algorithm forbids the reinsertion of an arc into 
specific parts of the solution for a predefined number of 
iterations denoted by ς , which is randomly drawn from 

min max[ , ]ς ς . Given that a visit to a station has a great effect 
on the battery level and time window obedience, a tabu 
attribute characterized by four elements ( , , , )k v wι  is 
defined to prevent violations caused by reinsertion. The tabu 
attribute is used to prevent arc ι  from being inserted into 
route kr  between v  and w , where v  and w  denote 
stations or depot. Through this process, an arc can be 
reinserted into a different part of the route. During the 
procedure, if a feasible new best solution is found, then the 
tabu status of a move is favored. After the predefined 
number of iteration TSη , the TS process is terminated. The 
best solution found during TS is stored in solution ''S  as 
output. 

 
4.6 Improvement procedure 
Similar to the work of Yang et al., the current study 
enhances the solution found by the former algorithm through 
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an improvement procedure [6]. For all the located stations in 
each route kr , the procedure first selects the charging 
stations in order and then removes the station from the route. 
If the removal of a station results in a battery capacity 
violation, the route is then split at the point with the least 
cost value. The cost value is calculated by 
*

, ' , 1 , 1 , ' , 1 , 1( ) ( )r
e i o o i i i d i o o i i ic d d d c t t tε + + + +⋅ ⋅ + − + ⋅ + − , where 
i  denotes the split point, , 'o o  the instances of depot, and 
*r
ec  the electricity price in depot. The procedure ends when 

the number of vehicles approaches the maximum limitation 
or the solution cannot be improved any further. The solution 
produced, denoted by '''S , is compared with the current best 
solution S  and evaluated by the acceptance mechanism 
illustrated below. If the solution '''S  is accepted, then '''S  
replaces S , and κ  is reset to 1. 
 
4.7 Acceptance mechanism 
Aside from always favoring an improving solution, the 
AVNS/TS algorithm also accepts a new deteriorating 
solution if it passes the acceptance criterion [38]. The 
acceptance criterion is developed based on SA and allows 
the unsatisfying solution to be a new–current solution with a 
certain probability ( ( ''') ( ))/AVNS AVNSf S f S Te− − . The value of the 
probability is based on the difference between the new and 
current solutions, that is, ( ''') ( )AVNS AVNSf S f S− , and 
temperature T . Temperature T  is initialized with 0T  and 
updated using 1n nT Tϑ −= ⋅  after each iteration. If no 
improving solution emerges in a predefined number of 
iterations denoted by nonη , then the current solution is reset 
to the best solution found so far. The value of T  is set to 0T  
after resetη  solution resets to diversify the solution. 
 
 
5 Experimental studies 
 
The performance of AVNS/TS on different sizes of 
instances is explored in terms of solution quality and 
computation time in this section. First, the parameter tuning 
is illustrated in Section 5.1, followed by the generation of 
instances in Section 5.2. Subsequently, the solution quality 
and effectiveness of the AVNS/TS algorithm are assessed 
with small- and large-scale instances in Section 5.3. 
 
5.1 Experimental environment and parameter setting 
The experiments are conducted on a desktop computer with 
an Inter Core i5 processor at 2.67 GHz, with 4 GB of RAM 
and Windows 7 Professional. The AVNS/TS algorithm is 
implemented as a single-thread code in Java. Ten reasonably 
large instances are randomly generated to tune the 
parameters. The initial values of the parameters found during 
the development of our algorithm are input as basis for the 
tuning. One parameter is adjusted, while the others are kept  

Table 2 summarizes the parameter settings for the initial 
penalty factors 0 0 0, ,cap tw batβ β β , the bounds min min min, ,cap tw batβ β β  and 

max max max, ,cap tw batβ β β , the penalty update factor α , and the 
number of penalty update iterations penη . For the algorithm, 
the number of iterations after which the probabilities are 
updated is adpη . The parameter that weighs the old and new 
scores in the adaptive mechanism is adpρ . The minimal and 

maximum tabu tenures are minς  and maxς , respectively. The 
number of TS iterations is TSη . The initial temperature 
parameter value is 0T . The cooling rate is ϑ . The number of 
iterations after which the current solution is reset to the 
global best solution is nonη . The number of solution resets 
after which the temperature parameter is reset is resetη . 
fixed. The best value of each parameter is determined after 
20 runs on the generated test instances. 
 
Table 2. Parameters of the parameters in AVNS/TS 
Penalties AVNS/ TS SA 

0 0 0, ,cap tw batβ β β  10 adpρ  0.3 0T  50 
min min min, ,cap tw batβ β β  0.5 adpη  20 ϑ  0.995 
max max max, ,cap tw batβ β β  1000 minς  15 nonη  25 

α  1.5 maxς  40 resetη  4 

penη  2 TSη  100   

 
 
We set the maximal number of AVNS/TS iterations to 
800η =  for instances with less than 100 customers and 

1.5800 / (0.01 )Cη = ⋅  for instances with more customers to 
achieve a good trade-off between run time and solution 
quality. 
 
5.2 Generation of test instances 
The instances for EV-MCS-LRPTW are generated based on 
the instances introduced in the pollution-routing problem 
(PRP) research of Demir et al., which consist of nine sets of 
instances with different sizes [39]. Specifically, we referred 
to their instances for network, customer demand, time 
windows, vehicle capacity, and driver wages. The speed of 
the vehicle is set to 90 km/h, the maximum speed in their 
research, to guarantee that all instances have at least one 
feasible solution in terms of time windows. The battery 
capacity of the vehicle is set to 80 kWh, as in the work of 
Davis et al. [40].  

The candidate charging station sites are randomly 
selected from the customer vertices. The number of 
candidate charging stations is determined as follows, 
according to the number of customers: If the number of 
customers is less than 50, then all the customer sites are 
assumed to be candidate station sites. Otherwise, 20% of the 
customers are assumed to be candidate station sites. One 
charging station is assumed to be located at the depot. 
Without loss of generality, four types of charging 
infrastructure are considered to be options in each candidate 
site, which are slow charging station (SCS), fast charging 
station (FCS), super-fast charging station (SFCS), and BSS. 
The construction cost comprises the set-up cost and rental 
cost in this case. The charging rate, the cost components 
including initial expenditure, and the station lifetime of 
Level II AC, Level III DC, and “super-fast” DC charging 
station in the work of Schroeder et al. are used for the 
charging rate, set-up cost, and lifetime of SCS, FCS, and 
SFCS in this work, respectively, based on the exchange rate 
of EUR to USD as 1.10[5]. The swap time and equipment 
cost of BSS are assumed to be 10 min and 500,000 USD, 
respectively [7,21]. The set-up cost input in the model is the 
cost that is amortized to one day based on the lifetime. The 
average rental cost of land is assumed to be 2.19 USD/㎡ per 
day with a random fluctuation within 10% for different 
locations [41]. The areas of SCS, FCS, and SFCS are 
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assumed to be 25 ㎡, and that of BSS is assumed to be twice 
that figure because of the automated equipment [32]. For the 
cost of back-up batteries at BSS, an apportioned cost by 
travel distance, called battery replacement cost, is utilized, 
instead of the total cost [20]. The electricity price at SCS, 
FCS, and SFCS is assumed to be the weighted average of the 
price at the peak period (0.5 USD/kWh for 2 pm–8 pm) and 
the price at the mid-peak period (0.2 USD/kWh for 7 am–2 
pm and 8 pm–10 pm), and that at the BSS and depot is the 

price of the off-peak period, 0.15 USD/kWh [42]. Table 3 
summarizes the data. 
 
5.2 Experiments on EV-MCS-LRPTW instances 
In the numerical tests, the performance of the algorithm is 
first assessed on small-scale instances by comparing its 
results with those of the CPLEX Solver 12.2, and then it is 
evaluated with large-scale instances. 

 
Table 3. Data of EV-MCS-LRPTW instances 

Description Value Description Value 
Loading capacity 3650 Set-up cost of BSS ($) 500000 

Speed (km/h) 90 Area of SCS, FCS, and SFCS (㎡) 25 

Battery capacity (kWh) 80 Area of BSS (㎡) 50 

Stated range (km) 161 Average rental cost ($/㎡/day) 2.19 
Speed (km/h) 90 Station lifetime of SCS (years) 15 
Charging rate at SCS (kWh/min) 0.12 Station lifetime of FCS (years) 15 
Charging rate at FCS (kWh/min) 1.05 Station lifetime of SFCS (years) 10 
Charging rate at SFCS (kWh/min) 4.00 Station lifetime of BSS (years) 20 
Time of battery swap at BSS (min) 10 Battery replacement cost ($/km) 0.20 
Set-up cost of SCS ($) 6600 Driver wages ($/h) 13.14 
Set-up cost of FCS ($) 60500 Average electricity cost at SFCS, SCS, FCS ($/kWh) 0.32 
Set-up cost of SFCS ($) 126500 Electricity cost at BSS and depot ($/kWh) 0.15 

 
 

Table 4. Comparison of results obtained with CPLEX and AVNS/TS on the small-scale EV-MCS-LRPTW instances 
Input  CPLEX AVNS/TS 

Instance |C| |R| |K| Best Time (s) Best Time (s) Gap (%) 

UK50_01_N6 6 6 2 199.16 49.32 199.16 0.44  0 
UK75_05_N6 6 6 2 68.19 63.04 68.19 0.42  0 
UK100_18_N6 6 6 2 194.31 134.39 194.31 0.39  0 
UK50_03_N8 8 8 3 210.10 1549.42 210.10 0.81 0 
UK75_11_N8 8 8 3 226.20 1004.79 226.20 0.74 0 
UK100_15_N8 8 8 3 387.96 959.48 387.96 0.59 0 
UK50_05_N10 10 10 3 394.54 6503.1 394.54 1.39  0 
UK75_12_N10 10 10 3 - 7200 403.11 1.15  - 
UK100_18_N10 10 10 3 - 7200 338.89 1.46  - 

 
 

Tab. 5. Results of results AVNS/TS on the large-scale EV-MCS-LRPTW instances 
Input Result 

Instance |C| |R| |K| SCS FCS SFCS BSS Best Time (min) 
UK50_01 50 50 10 1 2 1 0 838.88 10.56 
UK50_07 50 50 10 1 1 0 0 541.29 7.51 
UK50_10 50 50 10 1 2 1 0 906.05 16.27 
UK50_14 50 50 10 1 2 1 0 889.90 13.00 
UK75_03 75 15 15 1 3 0 0 1020.01 21.53 
UK75_05 75 15 16 1 2 1 0 1061.73 34.92 
UK75_11 75 15 16 1 2 0 0 794.56 16.84 
UK75_17 75 15 16 1 2 1 0 1084.41 30.56 
UK100_07 100 20 19 1 3 1 0 1328.59 57.47 
UK100_09 100 20 20 1 1 1 0 1055.17 48.90 
UK100_12 100 20 19 1 2 1 0 1199.35 50.34 
UK100_19 100 20 20 1 3 2 0 1598.84 71.22 
UK150_01 150 30 30 1 2 1 0 1542.47 105.06 
UK150_05 150 30 30 1 2 1 0 1587.59 107.30 
UK150_13 150 30 29 1 3 0 0 1649.29 84.45 
UK150_19 150 30 30 1 2 2 0 1941.96 146.07 
UK200_03 200 40 42 1 3 0 0 2003.44 113.41 
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UK200_07 200 40 40 1 2 1 0 2002.45 210.83 
UK200_10 200 40 42 1 1 1 0 2037.46 171.25 
UK200_16 200 40 40 1 2 1 0 2046.07 193.24 

 
 
 

The quality and run time of AVNS/TS on small 
instances is tested using several instances. The instances are 
generated by randomly selecting C  customers from the 
given instances. For example, UK50_01_N6 represents the 
instance in which six customers are selected from 50 
customers in PRP instances. Both the AVNS/TS algorithm 
and the CPLEX solver are applied to solve the generated 
instances. The results are summarized in Table 4. 

For clarity, columns 1 to 4 describe the basic structures 
of instances, where the number of customer number, 
candidate station sites, and vehicles are presented 
sequentially. The results and computing time are listed in 
columns 5 and 6, respectively. Columns 7 to 9 show the 
computational result of the AVNS/TS algorithm, computing 
time, and gap between the results using AVNS/TS and the 
CPLEX. As is commonly done, a time limit of 7,200s (2h) is 
set for all the instances. If the CPLEX solver fails to find the 
optimal solution for an instance, we use the symbol “-” to 
indicate its result. From the computing results, the 
AVNS/TS algorithm can effectively find the optimal 
solution. 

Subsequently, the AVNS/TS is applied to solve large-
scale instances. Table 5 presents the results of 20 instances 
with objective function values and computation times. In 
detail, columns 1 to 4 depict the feature of the instances. 
Columns 5 to 8 show the result of the charging station 
strategy. For each instance, the algorithm is executed five 
times, from which the best solution is recorded in column 9, 
and the related run time   in minute is presented in column 
10.  

The computation results imply that AVNS/TS can solve 
large-scale instances within reasonable time. The optimal 
solutions of several instances indicate that multiple types of 
charging stations should be considered to reach the 
minimum cost. The results also imply that SCS, with a 
minimal construction cost among the four types of stations, 
is suitable for the central depot, which is reasonable from the 
cost perspective. Meanwhile, a combination of FCS and 
SFCS is more suitable in most cases. The BSS type is not 
selected for any of the 20 instances mostly because its 

construction cost is much higher than those of FCS and 
SFCS. 
 
6. Conclusions 
This paper introduces EV-MCS-LRPTW, an extension of 
LRP, to optimize the routing of EVs and the strategy of 
charging stations under the constraints of loading capacity, 
battery capacity, and time windows. Contrary to existing 
research on EVs, this problem considers the possibility of 
using different types of charging infrastructure and 
optimizes the type selection of infrastructures along with the 
station location decision and routing plan. This problem is 
highly relevant in the context of EVs because charging 
stations are critical to EVs. The optimal selection of 
charging infrastructure can save money for logistic 
companies in the long run because each charging technology 
has its pros and cons in terms of charging speed, economic 
investment, and practical requirement.  

We developed a hybrid heuristic that combines AVNS 
with the TS algorithm for intensification to address the 
problem. A number of instances with realistic data were 
designed to validate the algorithm in the experimental 
studies. The computational results indicate that the algorithm 
can effectively reach nearly optimal solutions for small-scale 
instances, in contrast to the CPLEX solver. The algorithm 
also provided convincing results in moderate run time for 
large-scale instances. The results on realistic-sized instances 
demonstrate that incorporating multiple types of charging 
infrastructure in the station strategy and routing plan can 
result in a better solution than considering a single charging 
infrastructure under the constraints of time windows.  

In future, the problem can be extended to include 
multiple depots or consider a mixed fleet with EVs and ICVs. 
The existence of public charging stations can also be 
incorporated into the problem. The work can be extended by 
further considering specific characteristics of EVs. 
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