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Abstract 
 

We discuss the solution of various generalized forms of the Heat Equation, by means of different tools ranging from the 
use of Hermite-Kampé de Fériet polynomials of higher and fractional order to operational techniques. We show that these 
methods are useful to obtain either numerical or analytical solutions. 
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1 Introduction 
The Heat Equation 
 

  

∂
∂t

F x,t( ) = ∂2

∂t2 F x,t( )
F x,0( ) = g(x)

                  (1) 

 
is one of the most popular equations in Mathematical-
Physics [1]. Its solutions are well known and one of the most 
frequently exploited form is provided by the Gauss 
transform 
 

  

F x,t( ) = 1

2 πt
exp −

x −ξ( )2

4t

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

g ξ( )dξ
−∞

+∞

∫          (2) 

 
which is a kind of convolution of the function g(x) on a 
Gaussian. This solution holds for positive values of the 
variable t and when the integral on the r.h.s. of eq. (2) 
converges. 
 
 The Hermite-Kampé de Fériet (H.K.d.F.) polynomials 
[2] 
 

  
Hn x,y( ) = n! yr xn−2r

n− 2r( )!r!r=0

n
2

⎡
⎣
⎢

⎤
⎦
⎥

∑   ,            (3) 

 
with 
 

  
Hn x,0( ) = xn   ,                  (4) 

 

are natural solutions of the Heat Equations and indeed they 
satisfy the recurrences [3, 4] 
 

  

∂
∂x

Hn x,y( ) = nHn−1 x, y( )
∂
∂y

Hn x,y( ) = n n−1( )Hn−2 x, y( )
           (5) 

 
which can be combined to get 

  

∂
∂y

Hn x,y( ) = ∂2

∂x2 Hn x,y( )   .            (6) 

 
 It is to be stressed that the definition and the previously 
quoted properties of the Hn(x,y) polynomials are not limited 
to positive values of y, so that, in principle one can use this 
family of polynomials as suitable basis to get solutions for 
eq. (1), which can also be cast in the form [1] 
 

  
F x,t( ) = anHn x,t( )

n=0

+∞

∑   .              (7) 

 
 The validity of the above solution is limited to the fact 
that g(x) admits the expansion 
 

  
g x( ) = anxn

n=0

+∞

∑                   (8) 

 
and that the series on the r.h.s. of eq. (7) converges. 
 Going back to the case having a Gaussian as initial 
function we note that the solution is compatible with 
 

  
F x,t( ) = 1

1− 4t
exp − x2

1− 4t
⎛
⎝⎜

⎞
⎠⎟

  ,           (9) 

 
being the negative and positive solutions symmetrical it .is 
clear that the convergence radius is limited to |t| < 1/4 [5]. 
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In this paper we will consider generalized forms of the 
equation (1), namely 
 

  

∂
∂t

F x,t( ) = ∂µ

∂tµ
F x,t( )

F x,0( ) = g(x)
                 (10) 

 
where µ is any real such that 0 < µ < 1, or is an integer 
larger than 2. 
 We will see that a suitable extension of the previous two 
methods may be an efficient tool to deal with the solution of 
the evolution equation associated with eq. (10). 
 
 
2 Higher and fractional order Kampé de Fériet 
polynomials and solution of the generalized Heat 
Equation 
 
The higher order HKdF polynomials defined by [2, 6] 
 

  
Hn

m( ) x,y( ) = n! yr xn−mr

n− mr( )!r!r=0

n
m

⎡
⎣
⎢

⎤
⎦
⎥

∑   ,          (11) 

 
are natural solutions of eq. (10) with µ = m∈ ! , since they 
satisfy the recurrences 
 

  

∂
∂x

Hn
m( ) x,y( ) = nHn

m( ) x, y( )
∂
∂y

Hn
m( ) x,y( ) = n!

n− m( )! Hn−m
m( ) x, y( )

        (12) 

 
 It is now evident that we can apply the same procedure 
as before to obtain the solutions of the generalized Heat 
Equation in the form 
 

  
F x,t( ) = anHn

m( ) x,t( )
n=0

+∞

∑             (13) 

 
 Alternative methods also exploited in the treatment of 
non local problems in Physics and based on Fourier 
Transform techniques [7], namely 
 

   
F x,t( ) = 1

2π
exp imtk m( ) !g k( )exp ikx( )dk

−∞

+∞

∫   ,    (14) 

 
where 
 

   
!g k( ) = 1

2π
g x( )exp −ikx( )dx

−∞

+∞

∫   ,        (15) 

 
is the Fourier Transform associated with the initial function, 
are of limited usefulness. They are indeed applicable in 
cases in which the initial function has a Fourier transform 
and the integral (14) converges. 
 The fractional order counterparts of (11) are specified by 
(0.5 ≤ µ < 1, x > 0, n > 0) 
 

  
Hn

µ( ) x,y( ) = n! yr xn−µ r

r!Γ n− µ r +1( )!r=0

n+µ
µ

⎡
⎣
⎢

⎤
⎦
⎥

∑   ,       (16) 

 
which strictly speaking are functions and not polynomial 
functions. The Hn

(µ) (x,y) satisfy all the formal properties of 
the higher HKdF provided that m be replaced by µ, in 
particular [2, 8, 9] 
 

  

∂
∂y

Hn
µ( ) x,y( ) = ∂µ

∂xµ Hn
µ( ) x, y( )

Hn
µ( ) x,0( ) = xn

          (17) 

 
 As a consequence we can use Hn

(µ) (x,y) as a basis to 
derive the solution of a fractional diffusive equation whose 
usefulness in applicative problems has been discussed in 
previous articles, namely 
 

  
F x,t( ) = anHn

µ( ) x,t( )
n=0

+∞

∑   .            (18) 

 
 We have attempted a first benchmark of the correctness 
of the procedure by checking that the method provides the 
solution F(x, t)=g(x+t) in the limit  µ→1 . This check only 
cannot be considered sufficient to state the correctness of the 
procedure and in the forthcoming section we will discuss the 
comparison with an independent method based on an 
integral transform technique. 
 Then, since it is possible to represent the Generalized 
two-variable Bessel functions in terms of two-variable 
Hermite polynomials [12], in a forthcoming paper we will 
investigate how it is possible to obtain different expressions 
of the above results by using special families of Bessel 
functions. 
 
 
3 Conclusions 
 
In [5] has been pointed out that the Laplace-Transform 
identity 
 

  
exp − y δ( ) = y

2 π

exp − y2

4ξ( )
ξ ξ

exp −ξδ( )dξ
0

+∞

∫       (19) 

 
can be exploited to solve equations of the type 
 

  

∂
∂t

F x,t( ) = − ∂1 2

∂x1 2 F x,t( )
F x,0( ) = g(x) , t > 0

            (20) 

 
 The formal solution of the above equation writes 
 

  
F x,t( ) = exp −t

∂1 2

∂x1 2

⎛
⎝⎜

⎞
⎠⎟

g(x)            (21) 

 
by using therefore the identity (19), after setting 
 

  
δ → ∂1 2

∂t1 2  
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we find 
 

  
F x,t( ) = t

2 π

exp − t2

4ξ( )
ξ ξ

g x −ξ( )dξ
0

+∞

∫         (22) 

 
 In a comparison with the expansion in terms of Hn

(µ) (x,y) 
functions discussed in the previous section, the two 
procedures show full agreement and, being independent, we 
can be sufficiently confident on the reliability of the 
procedures. 
 It is worth noting that the transform (22) provides also an 
independent definition for half order H.K.d.F. polynomials 
[2, 3], namely (  n ≠ 0 ) 
 

  
Hn

1 2( ) x,−t( ) = t
2 π

exp − t2

4ξ( )
ξ ξ

x −ξ( )n
dξ

0

+∞

∫        (23) 

 
which appears the fractional counterpart of a more familiar 
form 
 

  

Hn x,t( ) = 1

2 πt
exp −

x −ξ( )2

4t

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
ξ n dξ

0

+∞

∫       (24) 

 
 The results we have discussed so far show that an 
appropriate combination of different techniques may provide 
a fairly useful tool to deal with the solution of evolution 
equations of higher order or fractional diffusive type. 
 Before concluding the paper, we want to stress that the 
proposed methods are general enough to go beyond the just 
discussed equations. 
 We consider indeed the case 
 

  

∂
∂t

F x,t( ) = − x
∂
∂x

⎛
⎝⎜

⎞
⎠⎟

1 2

F x,t( )
F x,0( ) = g(x)

           (25) 

 
 The use of the identities (19) 
 

  
exp λx

∂
∂x

⎛
⎝⎜

⎞
⎠⎟

g x( ) = g exp λ( )x⎡⎣ ⎤⎦           (26) 

 
leads to the solution 
 

  
F x,t( ) = t

2 π

exp − t2

4ξ( )
ξ ξ

g exp −ξ( )x⎡⎣ ⎤⎦dξ
0

+∞

∫        (27) 

 
 The final example we will discuss is the half-order 
Fokker-Planck equation [10] 
 

  

∂
∂t

F x,t( ) = − x + ∂
∂x

⎛
⎝⎜

⎞
⎠⎟

1
2

F x,t( )            (28) 

 
whose solution can be cast in the form 
 

  
F x,t( ) = t

2 π

exp − t2

4ξ( )
ξ ξ

exp −ξ x + ∂
∂x

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥g(x)dξ

0

+∞

∫    (29) 

 
 In dealing with eq. (29) we have the extra complication 
that the exponential should be decoupled using an 
appropriate relation. The use of the Weyl decoupling 
theorem [3, 4, 11] 
 

  
exp â + b̂( ) = exp â( ) exp b̂( ) exp − k

2
⎛
⎝⎜

⎞
⎠⎟

  ,      (30) 

 
where k is a c-number commuting with both the operators 

  â ,   b̂ , yields [1] 
 

  
F x,t( ) = t

2 π

exp − t2

4ξ − ξ x −ξ( )⎡⎣ ⎤⎦
ξ ξ

g x −ξ( )dξ
0

+∞

∫     (31) 

 
 Analogous results can be obtained by exploiting a 
slightly modified version of the expansion method, 
presented in the previous sections, for a preliminary 
discussion on this aspect of the problem. 
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