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Abstract 
 

Three-dimensional path planning for underwater vehicles is an important problem that focuses on optimizing the route 
with consideration of various constraints in a complex underwater environment. In this paper, an improved ant colony 
optimization (IACO) algorithm based on pheromone exclusion is proposed to solve the underwater vehicle 3D path 
planning problem. The IACO algorithm can balance the tasks of exploration and development in the ant search path, and 
enable the ants in the search process to explore initially and develop subsequently. Then, the underwater vehicle can find 
the safe path by connecting the chosen nodes of the 3D mesh while avoiding the threat area. This new approach can 
overcome common disadvantages of the basic ant colony algorithm, such as falling into local extremum, poor quality, 
and low accuracy. Experimental comparative results demonstrate that this proposed IACO method is more effective and 
feasible in underwater vehicle 3D path planning than the basic ACO model. 

 
 Keywords: Ant colony algorithm, Pheromone exclusion, 3D path planning, Environment modeling 
 __________________________________________________________________________________________ 
 
1. Introduction 
 
Three-dimensional (3D) path-planning problem requires 
finding a collision-free and optimal path for an underwater 
vehicle from start point to goal point in a complex 
underwater environment. Many studies on path-planning 
algorithms have been conducted, but most of these methods 
are for the 2D space [1], [2], [3], [4]. The algorithm of 3D 
path planning is difficult because of its complicated 
calculation process, large amount of stored information, 
difficulty in directly performing global planning, and other 
issues. Numerous algorithms have been used to solve the 3D 
path-planning problem, such as artificial potential field [5], 
A* [6], genetic [7], and particle swarm optimization [8] 
algorithms. Although these algorithms have contributed to 
the research on the path-planning problem in the 3D space, 
they have limitations. The potential field algorithm cannot 
avoid being trapped in local optimal path and cannot be 
extended directly when the optimization rule is complicated. 
The A* algorithm can be used to solve high-dimensional 
problems, but as the dimension increases, the space-time 
requirement of this algorithm becomes difficult to meet. The 
genetic algorithm can accomplish the planning when the 
environment condition is simple, but it has difficulty finding 
a feasible path in a complex environment. 
 Ant colony optimization (ACO) [9] algorithm proposed 
by M. Dorigo in 1991 is a new intelligent optimization 
algorithm [10], [11]. As a bionic algorithm, ACO has many 
characteristics, such as distributed computing, positive 

feedback mechanism, and swarm intelligence [12]. It can be 
used in 2D or 3D path planning, but the conventional ACO 
easily falls into local extremum, and has poor quality and 
low accuracy in the 3D path planning. In this paper, the 
path-planning problem of underwater vehicles in 3D space 
based on ACO is studied, and an improved ACO (IACO) 
search algorithm based on pheromone exclusion and 3D 
space environment modeling method is proposed. The IACO 
algorithm is based on the behavior of real ants. As ants move, 
the pheromones they release in their search path includes not 
only an attractive part but also an exclusive part. The IACO 
algorithm enables the ants in the search path process to 
explore initially and to develop subsequently. This algorithm 
has been applied to path planning in 3D space underwater. 
The simulation results show that the IACO algorithm has 
good robustness and high efficiency, can overcome the 
shortcomings of the conventional ACO, and can effectively 
improve the quality and precision of the search path. 
Moreover, the stability of the output is better than that of the 
conventional ACO. 
 
 
2. 3D space environment mathematical modeling 
 
Environment modeling expresses real 3D space environment 
information in an abstract pattern, which is closely related to 
the optimization algorithm, and influences the efficiency of 
the path planning directly [13]. The environment abstract 
modeling method is described as follows: first, the top left 
corner of the 3D map vertex is set as the origin of the 
coordinates of 3D space A; in point A, the 3D coordinate 
system is established. The x-axis follows the longitude 
degree increment direction and passes point A in the water 
level. The y-axis follows the latitude degree increment 
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direction and passes point A in the water level. The z-axis is 
perpendicular to the water level, which passes point A and 
moves upward to the water level. In the Cartesian coordinate 
system, A-xyz takes point A as a vertex, taking the maximum 
length |AB| along the axis x, taking the maximum length 
|AD| along the axis y, and taking the maximum length |AA’| 
along the axis z. Then, a cube space ABCD-A’B’C’D’ can 
be obtained, which is the 3D planning space [14], as shown 
in Figure 1. 

	 
Fig. 1. Three-dimensional model             

	 
Fig. 2. Planar graph partition 
 
 
 After establishing the planning space, we have to further 
divide the space and extract the 3D path planning of grid 
points to obtain the abstract environment model. First, we 
plot the planning space ABCD-A’B’C’D’ into n parts along 
line AB to obtain n+1 planes ),,2,1,0( nii !=∏ . Then, we 
plot arbitrary plane i∏  along AD into m parts and along 
AA’ into l parts, and we have to solve the intersection 
between planes for path planning of the grid points. The 
plane is divided, as shown in Figure 2. 

Through the aforementioned steps, the planning space 
ABCD-A’B’C’D’ is dispersed into several 3D points. With 
P* as the aggregate of these points in this paper, any point a 
in the aggregate corresponds to two coordinates, namely, 
sequence number coordinate ,1,0,,,2,1,0)(,,(1 == jnikjia !  

),,2,1,0,,,2 lkm !! = and position coordinate ),,(2 iii zyxa . 

The sequence number coordinate ),,(1 kjia  is the sequence 
number of a along the three directions in the process of 
plotting the planning space. As shown in Figure 1, i, j, and k 

are the sequence numbers of point a along lines AB, AD, 
and AA’. The position coordinate ),,(2 iii zyxa of point a is 
longitude excursion distance, latitude excursion distance, 
and depth excursion distance of the position corresponding 
to point A. The IACO based on pheromone exclusion 
principle is used in this 3D path point planning to establish 
an optimal path between the starting point and the target 
point according to certain criteria. 
 
 
3. Improved ant colony algorithm with pheromone 
exclusion for underwater vehicle 3D path planning 
 
3.1 Representation of pheromones 
The pheromone is a carrier of information from the past; it 
directly affects the global convergence and computational 
efficiency of the ant colony algorithm. In the path planning 
problem, we usually take the path between the adjacent 
nodes as the pheromone carrier, but this method applies only 
to small-scale problems [15]. An environment model 
structure map of the 3D path-planning problem has more 
nodes. If we take the path between the adjacent discrete 
nodes as the pheromone carrier, then the space complexity 
of the algorithm becomes unbearable. Position setting and 
updated method of pheromone are crucial for the ant colony 
algorithm to search 3D paths. The mathematical model of 
the 3D environment has divided the entire search space into 
a series of discrete points; the discrete points are the nodes 
that the ant colony algorithm needs to search for. In this 
study, the pheromone released by the ant in the search path 
includes not only the attractive part but also the exclusive 
part. It makes the ants in the search path process tend to 
explore initially, and tend to develop in the later search. The 
pheromone is stored in the discrete points in the 3D 
environment mathematical model. Each discrete point is 
stored with the pheromone value. The pheromone value 
represents the ant’s attraction or repulsion level, as each ant 
maintains its own pheromone. The pheromone value of the 
discrete node has to be updated locally after each ant passes 
by. When all the ants have set up the path, the pheromone is 
updated globally [16].  
 
3.2 Design of heuristic function 
Heuristic function is an important component of the path 
planning algorithm in 3D space. This function calculates the 
3D path selection probability of each point within the visible 
area for the ants searching from the current point to the next 
point. The heuristic function is not only the carrier of 
characterization of future information but is also an 
important part of the 3D route planning algorithm. 
Experimental results show that the heuristic function must 
ensure that the ant colony algorithm searches the global 
optimal solution within a reasonable period of time. The 
present study adopts the following heuristic function: 
 

321 ),,(),,(),,(),,( www kjiQkjiSkjiDkjiH ⋅⋅=      (1) 
 
where the factor ),,( kjiD is the path length from the current 
node to the next node to allow the planning path to be as 
short as possible. We use the function value of ),,( kjiS  to 
represent the safety grade of the feasible point ),,( kji . The 
value is 0 if the points cannot choose, and it makes the ant 
select a safe point. The factor ),,( kjiQ is the path length of 
the next node to the target node. It makes the ants choose a 

(1) 
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distance closer to the target; 321 ,, www  are the coefficients 
that represent the relative important grades of the mentioned 
factors. 
 The factor  D( i, j,k ) is computed as follows: 
 

])()()[(),,( 222
bababa zzyyxxsqrtkjiD −+−+−=      (2) 

 
where a is the current node and b is the next node. 
 The calculation formula of the factor ),,( kjiS is as 
follows: 
 

Num
UNumNumkjiS −=),,(         (3) 

 
where Num is the number of feasible points in the visual 
domain space of point ),,( kji , and UNum is the number of 
unfeasible points in the visual domain space. 
 The factor ),,( kjiQ is computed as follows: 
 

])()()[(),,( 222
dbdbdb zzyyxxsqrtkjiQ −+−+−=      (4) 

 
where b is the next node and d is the target node.  
 
3.3 Design of ant colony search strategy 
3.3.1 Visual domain space 
In this study, we choose the x-axis as the main direction of 
the 3D path planning. An underwater vehicle moves along 
the x-direction. To reduce the complexity of path planning, 
we simplify the vehicle movements through three operations: 
forward, transverse, and longitudinal movement. When the 
vehicle moves ahead one unit max,xL , we allow it to take the 
maximum lateral movement max,yL  and take the maximum 
longitudinal movement range max,zL . Thus, when the ant lies 
at ),,( kjiH  point on plane i∏ , a visual domain space of 
point ),,( kjiH  exists. 

 
Fig. 3. Visual domain space 

 
 
First, we provide the definition of the ant’s visual 

domain space. 
Definition 1 Visual domain space Given 

}),,2,1{( max,max, nLL xx !∈ , }),,2,1{( max,max, mLL yy !∈ , and 

}),,2,1{( max,max, lLL zz !∈ , as shown in Figure 3, we suppose 
that Γ  is the selection domain in the rectangular plane 

i∏ that contains the ant’s current path node, and ),,( kjiH is 
the arbitrary feasible point in the space Γ .Thus, the  
rectangular point 

sets )},,min(,,2,1{|,,( max,xLiniixzyx +++∈ !
)},2min(,,),0,2{max( max,max, mLjjLjy yy +−∈ !! ,

)}),2min(,,),0,2{max( max,max, lLkkLkz zz +−∈ !!  can be 
called the visual domain space of point ),,( kjiH  [17]. 

Therefore, when the ant moves from the current node to 
the next node, the search area of the ant is limited to the 
visual domain space, which can simplify the search space 
and improve the search efficiency of the ant colony 
algorithm. 
 
3.3.2 Design of path search strategy 
In the ant colony algorithm, the path search is conducted 
according to the probability, and the ants use a different 
decision rule, which is called pseudo-random proportional 
rule. This rule can use the distance heuristic information 
between the nodes as well as pheromone prior knowledge 
that is already stored, and can have a propensity to explore. 
The following process shows how ants in the present node 
iP in plane i∏ choose the next path node 1+iP in plane 1+∏i . 

(1) The feasible path nodes in the selection space of plane 
1+∏i are chosen according to the abstract environment model. 

(2) The heuristic information value vuiH ,,1+ of an arbitrary 
point ),,1( vui + in the selection space of plane 1+∏i is 
calculated. 
(3) A new method of transfer probability calculation is 
proposed in this paper. The pheromone of ants in the path 
searching process contains both the attractive part and the 
exclusive part. The ant is attracted by its own released 
pheromones and is excluded by pheromones released by the 
other ants. We defined that a representation attracts weight 
k
ii 1+Λ and a rejection of the weight k

ii 1+Φ for a feasible next 

node 1+iP  of the ant k. k
ii 1+Λ is designed according to this 

standard, as shown in the following equation: 
 

∑
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 The equation )(1 t

k
ii+τ represents the value of pheromones 

released by the ant k in the next path node 1+iP  in plane 

1+∏i . k
ii 1+Λ is calculated through the amount of attracted 

pheromones of all subsequent feasible nodes corresponding 
to the node iP  of ant k, and is standardized. 
k
ii 1+Φ is designed according to this standard and is shown in 

the following equation: 
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 Equation (7) represents the value of pheromones released 
by all other ants, except k in the next path node 1+iP in 

(3) 

(4) 

(2) 

(5) 

(6) 
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plane 1+∏i . k
ii 1+Φ  is calculated by the amount of excluded 

pheromones of all subsequent feasible nodes corresponding 
to the node iP  of ant k, and is standardized. 

According to the preceding definition, the pheromone 
weight of the arbitrary feasible point in plane 1+∏i is defined 
as 

 

∑
∈+
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++
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+ ΦΛ
ΦΛ

=η
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11

11
1 ))()((

))()((
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tNii
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ii
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k
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ii

k
i

tt
ttt       (8) 

 
Where the ratio of attraction and exclusion balances the 

relationship between exploration and development. Thus, the 
ants in the search path process tend to explore initially and 
to develop subsequently. 
 The next path node 1+iP , which has a position coordinate 
of ),,( 111 +++ iii zyxP , was chosen in plane 1+∏i according to 
the following pseudorandom proportional rule: 
 

  

pii+1
k ( t ) =

ηii+1
k ( t )H( xi+1 ,yi+1 ,zi+1 )
ηii+1

k ( t )H( xi+1 ,yi+1 ,zi+1 )
ii+1∈Ni

k ( t )
∑

feasible point

0 else

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (9) 

 
where )(1 t

k
ii+η is the pheromone amount weight saved in 

node 1+iP  in plane 1+∏i . 
4) Roulette algorithm is selected to choose the next path 
node in plane 1+∏i , according to the probability of each 
point. 
 
3.4 Pheromone update rule 
Pheromone update consists of two parts, namely, local 
pheromone trail update and global pheromone trail update 
[18]. The local pheromone trail is updated after the ant 
passes the point. The pheromone of the point decreases. The 
pheromone update can increase the probability of the point 
that the ant has not searched and achieve the goal of global 
search. The update method is expressed as follows: 
 

ijkijk τζ−=τ )1(  
 
where ijkτ is the pheromone value of the feasible point 

),,( kji  and ζ is the attenuation coefficient of pheromones. 
Unlike the conventional ACO algorithm, the IACO 

algorithm allows each ant to maintain its own pheromone. 
Thus, the pheromone of each ant also volatilized 
independently. The local update method of the IACO 
algorithm is shown as follows: 

kk
ijk

k
ijk Qtt +τ=+τ )()1(  

where kQ is the fixed size amount of the pheromone and is a 
positive constant. After a complete path was established, the 
pheromone was volatilized as follows: 

)()1()( tt k
ijk

k
ijk τρ−=τ  

where )10( <ρ<ρ is a parameter. 
The global pheromone trail is updated after the ant has 

constructed its path. We choose the shortest path based on 
the path length from the set of paths as standard, and we 
increase the pheromone value of each node. The global 
pheromone update method of the conventional ACO 
algorithm is shown as follows: 

 
ijkijkijk τΔρ+τρ−=τ )1(      (13) 

 

))(min( mlength
K

ijk =τΔ      (14) 

 
where length (m) is the length of the No. m ant’s path, 

)10( <ρ<ρ is a parameter, and K is the coefficient. 
The global pheromone trail of the IACO algorithm is 

updated after all ants have constructed their path. The update 
method of the IACO algorithm is shown as follows: 
 

))((
)()1(

txf
Qtt k

k
k
ijk

k
ijk +τ=+τ     (15) 

 
where ))(( txf k is the best fitness value in this study, which 
indicates the cost of the No. k ant to construct its path. The 
global pheromone trail is updated only for the iterative 
optimal or global optimal path in the IACO algorithm.  
 
3.5 Process design of algorithm 
In this paper, the algorithm of the 3D path planning process 
for an underwater vehicle is described as follows: 
 
 Step 1. After the model of the abstract 3D environment 
has been built, and the starting point and target position in 
abstract environment model has been determined, the main 
direction of the ant movement is also determined. Then, all 
the ants are placed in the starting point. The parameters 
needed to be set in the algorithm begin to be initialized. 
 
 Step 2. On the basis of heuristic information and 
pheromone weight value, the next point of the ant searching 
is determined according to formulas (1), (8), and (9). 
 
 Step 3. The local pheromone trail is updated according 
to formulas (11) and (12). 
 
 Step 4. We determine whether all the ants completed 
building a path. If they did not, then we return to Step 2. 
 
 Step 5. The global pheromone trail is updated according 
to formula (15) to determine whether the algorithm satisfies 
the stop condition and the optimal result output meets the 
conditions. Otherwise, we return to Step 2. 
 
 Figure 4 shows the flowchart of the improved ACO 
algorithm for underwater vehicle 3D path planning.  
 
 
4. Simulations 
 
In this section, we show the performance of the IACO 
algorithm as it is applied to the 3D path planning problems, 
and we compare the performance of this algorithm with that 
of the conventional ACO algorithm. We use MATLAB for 
the simulation. The simulation is based on real underwater 
terrain data. We divide the 21 km * 21 km * 2 km 
underwater region by means of uniform mesh method, and 
we use the IACO algorithm to search the collision-free path 
from the starting point to the target point of this region. To 
facilitate problem solving, we set the deepest point in this 
area to zero. The height of the other point according to the 
height difference of the deepest point is obtained in turn. 
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The 3D simulation diagram for the water area of the model 
is shown in Figure 5.  
 

 
Fig. 4. Flowchart of improved ACO algorithm 
 
 
 

 

 
Fig. 5. 3D simulation diagrams 
 
 
4.1 Simulation 1 
Simulation 1 is performed on a relatively flat plane of the 
environment with the set start point (1,10,800) and goal 
point (21, 4, 1000). We first use the conventional ant colony 
algorithm for path planning in the water, and then we use the 
IACO algorithm based on the pheromone exclusion 
principle for path optimization between the initial point and 
the target point. The parameter setting is shown in Table 1. 
 
Table 1. Parameters of the algorithm 

X axis grid 
number 

Y axis 
grid 

number 

Z axis 
grid 

number 

ant 
number  τ 0  ζ  

21 21 10 10 1 0.2 
iteration 
number K α  

 Q
k   f ( xk ( t )  ρ  

100 100 5 100 optimal 
fitness 0.5 

 
 

The experiment is conducted eight times. The planning 
path length of the conventional ACO and the IACO is shown 
in Table 2. 

In Experiment 1, the optimal path length of ACO 
planning is 28.3183 km, and the optimal path length of 
IACO planning is 25.1251 km. The simulation comparison 
charts is as follows. 

 
 
Table 2. Comparison of path length (unit: km) 

 1 time 2 times 3 times 4 times 5 times 6 times 7 times 8 times average 
ACO 31.1514 32.2239 30.9962 34.4189 31.8780 31.7936 28.3183 31.9156 31.5869 

IACO 27.5471 28.7836 25.1251 27.9500 25.8855 27.1325 25.1399 25.8855 26.6811 
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Fig. 6. Perspective diagram of the optimal path with ACO and IACO 
planning                  

 

 
Fig. 7. Top view of the optimal path with ACO and IACO planning 
 
 

 
Fig. 8. Fitness variation diagram of ACO and IACO planning 
 
 

In Experiment 1, the average path length of the ACO 
algorithm planning is 31.5869 km, and the average path 
length of the IACO algorithm planning is 26.6811 km. The 
optimal path time comparison table of the ACO and IACO 
algorithms is presented in Table 3. 
 
Table 3. Optimal path time comparison table 

 E_time(s) 
ACO 1.805105 
IACO 2.825599 
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 In Experiment 1, the simulation results of ACO planning 
show that the path can fluctuate easily in the local depth, 
whereas IACO performs better. The 3D average path length 
of the IACO planning is significantly shorter than that of the 
ACO. However, because of increased calculation of the 
weight of pheromone attraction and exclusion in IACO, this 
algorithm is slightly slower than ACO.  
 

4.2 Simulation 2 
Simulation 2 was performed on a relatively steep plane of 
the environment, with the set start point (1, 18,800) and the 
goal point (21, 16, 1200). The values in Table 1 were used in 
the parameter setting of the algorithm simulation process. 
The experiment was conducted eight times. The planning 
path lengths of the ACO and IACO algorithms are shown in 
Table 4. 

  
Table 4. Comparison of path length (unit: km) 

 1 time 2 times 3 times 4 times 5 times 6 times 7 times 8 times average 
ACO 27.5298 28.2408 41.5395 29.4466 43.0707 30.2734 27.8154 27.7280 31.9555 
IACO 23.5443 24.3555 25.1605 23.9353 23.5047 24.7242 24.7299 23.9015 24.2319 

 
 In Experiment 2, the optimal path length of ACO 
planning is 27.5298 km, and the optimal path length of 
IACO planning is 23.5047 km. The simulation comparison 
charts are shown in Figure 9, Figure 10 and Figure 11. 

 
 

 
Fig. 9. Perspective diagram of optimal path with ACO and IACO 
planning              
 
 
 
 
 
 
 

 
 
 
 

 
 
 

 
Fig. 10. Top view of optimal path with ACO and IACO planning 
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Fig. 11. Fitness variation diagram of ACO and IACO planning 
 

 
 

In this simulation, the optimal path time comparison of 
the ACO and IACO algorithms is shown in Table 5. 
 
Table 5. Optimal path time comparison table 

 E_time(s) 
ACO 2.699045 
IACO 4.097759 

 
 
 In Experiment 2, the simulation results show that the 3D 
average path length of the IACO planning is significantly 
shorter than that of ACO in a relatively steep plane of the 
environment. Moreover, a certain distance is maintained 
between the obstacles. The optimal path is more stable, and 
it meets the requirements of the algorithm for path planning. 
However, the path slightly increases the simulation time of 
the algorithm. 
 
4.3 Simulation 3 
Simulation 3 chooses diagonal points in the environment as 
the starting point and the target point, with the set start point 
(1, 18,800) and the goal point (21, 5, 1500). The parameter 
setting of the algorithm simulation process still uses the 
values in Table 1. The experiment is conducted eight times. 
The planning path length of the conventional ACO and the 
IACO is shown in Table 6. 

  
Table 6. Comparison of path length (unit: km) 

 1 time 2 times 3 times 4 times 5 times 6 times 7 times 8 times average 
ACO 33.3286 35.6225 36.0060 33.0330 33.1249 37.3286 35.2400 32.2071 34.4863 
IACO 29.7300 29.7248 29.7407 29.7300 29.7401 29.7191 29.7032 29.7243 29.7265 

 
 In Experiment 3, the optimal path length of ACO 
planning is 32.2071 km, and the optimal path length of 
IACO planning is 29.7032 km. The simulation comparison 
charts are shown in Figure 12,Figure 13 and Figure 14. 
 

 
 
 
 
 
 

 
 
 
 
 

 
Fig. 12. Perspective diagram of optimal path with ACO and IACO 
planning             
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Fig. 13. Top view of optimal path with ACO and IACO planning 
 

 

 
Fig. 14. Fitness variation diagram of ACO and IACO planning 
 
 In this simulation, the optimal path time comparison 
table of the ACO and IACO algorithm is shown in Table 7. 
 
Table 7. Optimal path time comparison table 
 E_time(s) 
ACO 4.945559 
IACO 1.953487 
 
 

In Experiment 3, the simulation results show that the 3D 
average path length of IACO planning is much shorter than 
that of ACO in a relatively complex plane of the 
environment. In addition, the optimal path is more stable; 
the running time of the IACO algorithm to obtain the 
optimal path is shorter than that of the ACO. 

The simulations also show that the optimization ability 
in a complex environment of the IACO algorithm is stronger 
than those of others. 
 
5 Conclusion and Future Work 
 
In this paper, the IACO algorithm with pheromone exclusion 
was proposed, and it was used to study the 3D path planning 
problem in complex underwater environments. To optimize 
the 3D path, we established the model of the 3D space in the 
underwater environment. The ant colony algorithm based on 
pheromone exclusion was proposed and applied to this 
algorithm for path planning in 3D space underwater. The 
objective was to find the optimal path between the start and 
goal points under three different environments. We 
presented the detailed process of the algorithm and 
compared the conventional ant colony algorithm and its 
improved version. The simulation results show that the 
algorithm proposed in this paper can improve search quality 
and accuracy. The output stability is good, especially in the 
complex plane environment. Several problems were also 
observed. For example, the searching time of the algorithm 
is extremely long and the planning path is not the global 
optimal path. Our future work aims to focus on how to speed 
up the convergence of the algorithm and how to improve the 
global optimization ability of the algorithm. 
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