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Abstract 
 

The accuracy of the bottom curve of a PC track beam is strongly related to the production quality of the entire beam. 
Many factors may affect the parameters of the bottom curve, such as the superelevation of the curve and the deformation 
of a PC track beam. At present, no effective method has been developed to determine the bottom curve of a PC track 
beam; therefore, a new technique is presented in this paper to deduce the parameters of such a curve and to control the 
accuracy of the computation results. First, the domain of the bottom curve of a PC track beam is assumed to be a spindle 
plane. Then, the corresponding supposed top curve domain is determined based on a geometrical relationship that is the 
opposite of that identified by the conventional method. Second, several optimal points are selected from the supposed top 
curve domain according to the dichotomy algorithm; the supposed top curve is thus generated by connecting these points. 
Finally, one rigorous criterion is established in the fractal dimension to assess the accuracy of the assumed top curve 
deduced in the previous step. If this supposed curve coincides completely with the known top curve, then the assumed 
bottom curve corresponding to the assumed top curve is considered to be the real bottom curve. This technique of 
determining the bottom curve of a PC track beam is thus proven to be efficient and accurate. 
 

 
Keywords: straddle-type monorail, PC track beam curve, dichotomy algorithm, least square method, fractal, accuracy criterion. 
__________________________________________________________________________________________ 

 
1. Introduction 
 
The track beam of a monorail system is generated in three 
types: precast concrete (PC), reinforced concrete, and steel 
track beams. The PC track beam is the most commonly used 
among these types [1],[2]. At present, the bridge system of 
the monorail track beam can be divided into simply 
supported and continuous structure systems. The typical 
spans of a PC track beam in a simply supported structure 
system are 22and 24 m; this combination is often applied in 
Chongqing, China and in Japan (Fig. 1). The span of the 
track beam in a continuous structure system is 30 m; this 
beam is commonly constructed in Dubai, Malaysia, and 
Brazil, among others (Fig. 2). 

The PC track beam is important in the monorail bridge 
system because such beams not only comprise the track that 
guides monorail vehicles but also bears the corresponding 
loads, including that of the track’s own weight (Fig. 3). To 
ensure the operation safety and comfort of a monorail train, 
a PC track beam must be adequately sized [3]. This size 

mainly depends on the bottom curve of this beam during 
construction [4,5]; nonetheless, only the top beam curve is 
known at this stage. Although deducing the bottom curve of 
a PC track beam is significant, no effective method has been 
developed to determine this curve and to assess the accuracy 
of computation results. For instance, Xu G [6] determined 
the bottom curve of a PC track beam based on a given top 
curve. Zhu Y L [7] identified the manufacturing parameters 
of a PC track beam through construction control; this 
approach partly enhances the quantity of PC track beams, 
although it is time consuming. The conventional technique 
can approximate the bottom curve of a PC track beam; 
however, the obtained curve may be inaccurate in complex 
cases, such as the transition curve, curve superelevation, and 
vertical curve. Therefore, the current study develops a new 
method to determine the curves of a PC track beam. The 
research results generated are of theoretical and practical 
significance. 

 The new method not only deduces the curve of a PC 
track beam based on a geometrical relationship that reverses 
the one identified by the conventional method but also 
establishes an effective criterion to assess the accuracy of the 
obtained curve. First, the method assumes that the domain of 
the bottom curve of a PC track beam is a spatial spindle 
plane that is divided into m × m subsections; this assumption 
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explains the corresponding m × m crossover points in the 
plane. Second, the corresponding m × m points, which are 
composed of the domain plane of the assumed top curves, 
can be easily obtained based on the m × m points in the 
assumed bottom curve plane; these points can be determined 
according to the geometrical relationship that is the opposite 
of that identified by the conventional method. Third, the 
point that is nearest to the known top curve in any row of the 
assumed top curve plane can be quickly derived with the 
dichotomy algorithm. This algorithm is used to avoid 
complex calculations for the assumed top curve if all the 
calculated m × m points of the assumed top plane are far 
from the known top curve. Fourth, the assumed top curve of 
a PC track beam can be established by arranging the m 
points obtained in the previous step according to the 
criterion defined by the least square method. Finally, the 
criterion to assess the accuracy degree of the assumed top 
curve is established in the fractal dimension. This criterion 
postulates that the degree of coincidence between the 
supposed and the known top curves is high and that the 
accuracy of the curve that corresponds to the domain plane 
of the assumed bottom curve improves. 
 
 
2. Deduction model of PC track beam curves 
 
The deduction model of the PC track beam curve is shown 
in Fig. 4, where La is the assumed top curve, Lb is the known 
top curve, and Lc is the assumed bottom curve of a PC track 
beam, Point C is located in the known top curve Lb, point A 
is positioned in the assumed bottom curve Lc, and point B is 
deduced according to the geometric relationship shown in 
Fig. 5. The space curve La is composed of a series of 
assumed points B. 

 

 
Fig. 1. Simply supported structure system 
 

 
Fig. 2. Continuous structure system 

 
Fig. 3. Monorail vehicle and track beams 
 
 
 

 

Fig. 4. Deduction model of the PC track beam curve 
 
 

The geometric model of PC track beam deduction is 
depicted in Fig. 5 and explains the geometric relationship [8] 
of points A, B, and C. Hi is the height of a PC track beam 
and θ is the relation to parameters ia, ib, and iv. 

 

 

Fig. 5. Reversed geometric relationship for top curve deduction 
 

 
θ= f (ia, ib, iv),                                                    (1) 
 
where ia is the superelevation of the known top curve of a PC 
track beam; ib is the dip angle between the bottom surface of 
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a PC track beam and the horizontal plane; and iv is the 
longitudinal slope. 
 
 
3. Establishment of the supposed top curve 
 
The deduction model of a PC track beam curve has been 
elaborated in the previous section; however, the process of 
obtaining the supposed bottom curve La and supposed top 
curve remains unknown. Therefore, an elliptic plane πA (Fig. 
6) can easily be determined based on the PC track beam 
construction process. The point sets {Ai,j}(i = 1, 2,…, m, j = 
1, 2,..., m) can be assumed by dividing plane πA into m 
subsections. The corresponding supposed top curve domain 
plane πB can also be obtained easily according to the 
geometric relationship presented in Fig. 5. The domain 
planes of the supposed top and bottom curves are exhibited 
in Fig. 6. 

If an assumed top curve can be constructed by any point 
sets P ={Pi}(i = 1,2,...,m) chosen from the division of 
domain plane πB into m × m points and if only one point can 
be selected from one row at any time, then m

mC  supposed top 
curves can be determined. If all supposed top curves are 
compared with the known top curve Lb, then the 
computational quantity is large.  
 

 

Fig.6. Mapping of two surfaces 
 
 
3.1. Filtering of the point sets of the supposed top curve 
Only one point is optimal in any row in the domain plane πB; 
the other points are undesired. The dichotomy algorithm 
[9],[10] shown in Fig. 7 is used to filter the optimal point 
and to avoid large computational quantity. 
 

 

Fig.7. Diagram of minimum distance point selection 
 
 

The mark “☆” represents a point that is in the known top 
curve, and “●” denotes the points that are in the supposed 
top curve domain πB and in the k row. 

Point A, which is marked as “☆ ,” is one point in the 
known top curve Lb. The other points are marked as “●,” 
such as B, C, D, E, and F. These points belong to domain 
plane πB. Moreover, they are ordered in a row based on their 
distance in this domain plane. Points B and C are assumed to 
be the quarter points in the k row of plane πB, and points D 
and E are the one-eighth points. The dichotomy algorithm is 
applied according to the following steps: 

 
(1) The distances of points B and C to point A are 

represented by SAB and SAC. If the distance from point C to 
point A is greater than the distance from point B to point A, 
that is, SAB < SAC, then point B is better than point C. This 
outcome indicates that the other points on the right half of 
the row can be eliminated. 

(2) The distances of one-eighth points D, E to point A 
are similarly computed and are denoted by SAD and SAE. If 
these distances are ordered as SAE < SAB < SAD, then the other 
quarter points on the D side can be eliminated. 

(3) As per a comparison of other distances with the 
method described in steps (1) and (2), F is the point nearest 
to A among those presented in Fig. 7, thus indicating that 
point F is the optimal point of the row selected from plane 
πB. 

(4) If all the optimal points of every row are selected to 
comprise the point sets P = { Pi }(i = 1, 2,..., m), then a 
supposed top curve La can be constructed with these sets. 
Fig. 8 shows a supposed top curve La that is fitted by points 
P = { Pi }(i = 1, 2,..., m). 
 
3.2. Structural criterion of the supposed curve 
Although the point sets P = { Pi }(i = 1, 2,..., m) of an 
assumed top curve are filtered by the dichotomy algorithm 
as described in section 3.1, the process of ordering these 
points and constructing an optimal supposed top PC track 
beam curve remains undeveloped. Therefore, a computer 
program is designed according to the least square method 
[11], [12], [13] and is elucidated as follows. 

In the sets Φ = Span{φ1, φ2,…, φn}, a known piece of 
data (xi, fi)( i = 1, 2,…, m) can be constructed as the 
following function. 
 

∑ <= )(),()( ** mnxaxS kkϕ                                          (2) 

 
The errors of this function are described as: 

 

iii fxS −= )(*δ , (i = 1, 2,…, m).                             (3) 
 
 If the parameter S*(x) fits into the following equation: 
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where ω(x) ≥ 0 is the weight function defined in the range 
[a, b], then the method presented above is the least square 
method and the parameter S*(x) that meets the requirement 
of Eq. (4) is the least squares solution that can be described 
by the following equation: 
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 To determine the solution to Eq. (5), the values of the 
following equation must be minimized as follows: 
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 The minimal values of Eq. (6) are assumed to be 
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 Given point set {xi} and weight function {ωi} (i = 1, 
2,…, m), if the coefficient functions φ0(x), φ2(x),…, φn(x) 
meet the requirements of the following equation: 
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 Then the coefficient function { }nj 0ω  is orthogonal and 

the coefficient matrix of Eq. (11) is simplified as a diagonal 
one.  
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 If the primary data are assumed to be (xi, fi)(i = 1, 2,…, 
m), then the least squares solution of the fitting curve can be 
described as follows: 
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4. Criterion for Accuracy Evaluation 
 
If the supposed top curve La coincides completely with the 
known Lb, then the initial supposed curve Lc is the real 
solution for the bottom curve of a PC track beam. 
Unfortunately, the real bottom curve is difficult to measure; 
thus, a reasonable criterion must be established to assess the 
accuracy of a supposed bottom curve. The accuracy 

assessment criterion may be developed in the fractal 
dimension, and the error value is set to 0.005. 
 
4.1. Box Fractal Dimension 
The box dimension [14], [15], [16], [17] is a parameter to 
measure the fractal dimension. Assuming that F is a no-null 
subset of set Rn, δ(F) is the lowest subset count that can 
cover subset F. The maximum scale of δ(F) is defined as δ. 
The upper and lower box count dimensions FDimB  and 

FDimB  are defined as follows, respectively: 
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 If FDimB  is equal to FDimB , then the aforementioned 
equations can be simplified as: 
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4.2. Initial estimation 
Fig. 8 shows a spatial surface that is composed of the 
assumed top curve Lb and the known top curve La of a PC 
track beam. The initial assumed curve Lc can be identified as 
the real bottom curve of a PC track beam [18] if the 
considered parameters meet the following two requirements: 
(1) The lengths of the curves L

aS and L
bS  are almost similar; 

that is, 
 

05.0|| ≤−
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where L

aS  and L
bS  represent the lengths of the curves La and 

Lb, respectively. 
(2) The area of the space surface composed of curves La and 
Lb is approximately equal to zero or 
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where Ai is the area of each subsurface. 
 
4.3. Optimization criterion 
However, several defects may be detected in the 
aforementioned initial criterion because the degree of 
influence by certain factors is difficult to estimate 
accurately. These factors include curve superelevation as 
well as the span and height of a PC track beam. To 
overcome these complications, the fractal dimension is 
adopted to optimize the initial criterion. Fig. 8 illustrates the 
surface that is divided into a series of small sub-areas. 
Curves La and Lb are then divided into N sections [19], [20], 
and the length of each curve may be described as: 
 

N
SLaL
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where L

aδ  and L
bδ  are the lengths of the sub-sections of 

curves La and Lb. 
 

 

Fig.8. Surface composed of the assumed and known top curves 
 
 
 Assuming that curves La and Lb are divided M times [14], 
[15], the sub-sections are denoted by Nj (j = 1, 2,..., M) each 
time and the micro area scale of each sub-section is A

jδ . To 
overcome the differences in parameter A

jδ  during each 
iteration, the main axis of each micro element replaces the 
sub-area. Fig. 9 displays a micro element DEGF of the 
surface presented in Fig. 9. L

aδ is the length of sub-section 
DE, L

bδ  
is the length of sub-section GF, h1 is the length of 

EG, and h2 is the length of DF. Points B and C represent the 
middle parts of sub-sections DE and GF, respectively. δH is 
the length of BC and is defined as the length of the major 
axis of the micro element DEGF. δH is calculated by Eq. (22). 
 

2
21 hh

H
+=δ                                               (22) 

 
 

 

Fig. 9. Micro elements of a surface 
 

The major axis δH may reach zero (δH→0) as the area of 
Ai reaches zero (Ai→0) as well. Therefore, the supposed 
scale δ is set to a range of 2 mm to 5 mm in this study. Upon 
dividing the surface into Nj sub-areas (j = 1, 2,..., M), the 
number Kj of micro elements with a major axis that is longer 
than scale δ is determined. The box-counting fractal 
dimension [21], [22] Ds is defined as: 
 

∑∞→=
M

j j

j
Ns N

K
D lim                                            (23) 

 
 Eq. (23) is equivalent to Eqs. (18) and (19); therefore, 
the accuracy assessment criterion of the assumed curve may 
be estimated with Eq. (23). In practical application, the 
initial assumed curve can be fully regarded as the real 
solution to the bottom curve of a PC track beam if the fractal 
dimension Ds computed with Eq. (23) is less than or equal to 
0.05 (or Ds ≤ 0.05). 
 
 
5. Practical application 
 
Given 10 pieces of PC track beams as an example, the 
fractal dimensions calculated with the aforementioned 
method are shown in the following table. The relation of the 
fractal dimension with division time is depicted in Fig. 
10.The fractal dimension Ds is a dimensionless coefficient, 
and the unit of division degree is time. 
 

 
Fig.10. Fractal dimension vs. division time 
 
 

 
Table 1. Fractal dimension (Ds) of each PC track beam 

                PC No. 
Times   01 02 03 04 05 06 07 08 09 10 

1 0.312 0.283 0.324 0.472 0.521 0.092 0.189 0.291 0.082 0.443 

2 0.127 0.105 0.152 0.305 0.321 0.053 0.116 0.205 0.057 0.306 

3 0.072 0.063 0.084 0.278 0.205 0.028 0.072 0.126 0.048 0.239 

4 0.032 0.023 0.061 0.192 0.118  0.065 0.073  0.124 

5   0.023 0.095 0.069  0.036 0.065  0.083 

6    0.063 0.043   0.043  0.035 
7    0.042       
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As per Fig. 10 and Tab. 1, the decrease in all the fractal 
dimension Ds values with increases in partition time and 
decrease speed is not uniform. The difference is mainly 
caused by influencing factors, such as the span and element 
of the known curve. 

 
5.1. Factors affecting division time 
(1) The number of divisions is proportional to the span of a 
PC track beam (for instance, the span of No. 08 is longer 
than that of No. 02). 
(2) The number of divisions is inversely proportional to the 
radius of the known top curve (for instance, the radius of No. 
03 is smaller than that of No. 04). 
(3) The number of divisions is proportional to the 
superelevation of the known top curve (for instance, the 
superelevation of No. 04 is greater than that of No. 10). 
(4) The number of divisions is proportional to the 
superelevation rate of the known top curve (for instance, the 
superelevation rate of No. 10 is greater than that of No. 01). 
 
5.2. Factors affecting the decay rate of fractal dimensions 
(1) The span of a PC track beam extends with a slow decay 
rate (No. 08). 
(2) The curve radius of a PC track beam shrinks with a slow 
decay rate (No. 10). 
(3) The superelevation of a PC track beam curve is enhanced 
with a slow decay rate (No. 05). 
(4) The superelevation rate of a PC track beam increases 
with a slow decay rate (No. 05). 
(5) The decay rate of the fractal dimension of a linear PC 
track beam is accelerated to its maximum, the circular PC 
track is slow, and the transition curve of the PC track beam 
decelerates to its minimum. 
 
6. Conclusions 
 
A reverse model that is dissimilar from conventional 
methods is established to identify the parameters of PC track 
beam curves. If the domain of the bottom curve of a PC 
track beam is assumed to be a spindle plane, then this model 
contrarily deduces the corresponding spindle domain of the 
assumed top curves. The assumed top curve derived from a 
domain of such curves is optimized. If the degree of 
coincidence between this constructed curve and the known 
top curve meets certain requirements, then the corresponding 

bottom curve can be considered the real bottom curve of a 
PC track beam. This technique is confirmed to be valid and 
feasible, and the main conclusions drawn from this study are 
presented below: 
(1) The deduction model of PC track beam curve parameters 
is established in a manner contrary to conventional methods. 
The known top curve is regarded as a standard to assess the 
accuracy of the assumed top curve, and the deduction model 
determined according to the reversed approach sufficiently 
ensures the accuracy of the theoretical derivation and of the 
calculation results. 
(2) The surface comprising the assumed and known top 
curves is regarded as the research object. Instead of 
comparing the shapes of these two curves directly, the 
coincidence degree between both curves is assessed by 
calculating the area of this surface. This process transfers the 
known top curve from the Euclidean geometry space to the 
fractal dimension space, thereby creating the basis of the 
assessment criterion established in the fractal dimension.  
(3) The assumed top curve is constructed with the dichotomy 
algorithm and the least square method; this curve is 
compared with the known top curve based on the fractal 
dimension to avoid unnecessary calculations and to ensure 
the accuracy of the goal curve.  
(4) The length δh of the major axis of the subsurface is 
regarded as the assessment threshold to facilitate selection 
among different mesh scales and to ensure the consistency of 
evaluation standards each time. The influence of various 
mesh scales is reflected completely on the other two minor 
axes; therefore, the assessment threshold of the major axis 
can be a constant value.  
(5) The discrete algorithms, theoretical assumptions, and 
deduction method presented in this paper are easily realized 
with computer programs. Thus, this study lays a foundation 
for their application in practical engineering. 
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