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Abstract 
 
In this work, we have proposed modified PSO algorithm based optimizer for automatic circuit design. The performance 
of the modified PSO algorithm is compared with two other evolutionary algorithms namely ABC algorithm and standard 
PSO algorithm by designing two stage CMOS operational amplifier and bulk driven OTA in 130nm technology. The 
results show the robustness of the proposed algorithm. With modified PSO algorithm, the average design error for two 
stage op-amp is only 0.054% in contrast to 3.04% for standard PSO algorithm and 5.45% for ABC algorithm. For bulk 
driven OTA, average design error is 1.32% with MPSO compared to 4.70% with ABC algorithm and 5.63% with standard 
PSO algorithm. 
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1. Introduction 
 
With the advancement in CMOS technology, the size of 
MOSFET device shrinks. The smaller device size brings more 
non-linearity in the characteristics of the device. This brings 
the problem of device sizing in design and optimization of the 
analog circuits. Under such conditions, the traditional design 
approach based on the analytical calculations followed by the 
simulation fails to provide time efficient ASIC development 
cycle. On the other hand, with increasing power of the modern 
CPU, it is possible to use optimization algorithms effectively 
for circuit design. 
 The optimization methods such as linear programming, 
integer programming, non-linear programming and quadratic 
programming are examples of deterministic programming 
techniques. These techniques require having differentiable 
objective function in order to obtain global solution of the 
optimization problem [1]. For the circuit design problem, the 
formulation of the accurate objective function is extremely 
difficult. The dynamic programming is another optimization 
technique based on stochastic programming models that 
guarantees global solution of optimization problem. However 
the computational efforts required to solve the problem 
increase exponentially as the size of problem increases [2]. 
Another class of the optimization algorithm includes 
computational intelligence based techniques such as Genetic 
Algorithm (GA), particle swarm optimization (PSO), 
artificial bee colony algorithm (ABC). They do not guarantee 
the global solution of the given problem. However, they do 
not require complex mathematical calculations and hence 
easy to implement using programming languages. In many 
multi-objective problems such as CMOS circuit design, we 
depend upon the simulation result and it is very difficult to 
form exact objective function mathematically. Under such 

situations, the evolutionary algorithms become obvious 
choice.  
 The use of the A-NSGAII algorithm was demonstrated in 
[3] to design RF low noise amplifier, leapfrog filter and ultra 
wideband LNA. In [4], single ended telescopic Op-Amp is 
designed using the genetic algorithm. The PSO algorithm and 
its variants are used for automatic design of low-power low-
voltage CMOS circuits [5]. In [6], the performances of the 
genetic algorithm (GA), PSO algorithm and Simulated 
Annealing algorithm are compared by designing the LC 
voltage controlled oscillator. An evolutionary approach is 
used to design RF low noise amplifier in [7]. The chaotic DE 
algorithm, standard DE algorithm, ABC algorithm and PSO 
algorithm are used in [8] to design miller OTA and their 
performances are compared.  
 

 
Fig. 1. Conceptual block diagram of optimizer 
 
 
 In this work, we have demonstrated application of ABC 
algorithm and standard PSO algorithm for automatic circuit 
design and proposed a modified PSO algorithm. The 
performances of these three algorithms are compared by 
designing two-stage CMOS op-amp and bulk driven OTA in 
130nm CMOS technology. This paper is organized as 
follows: In Section 2, the overview of the optimizer is given. 
Section 3 discusses ABC algorithm, standard PSO algorithm 
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and modified PSO algorithm. The automatic circuit design 
examples are illustrated in section 4. Finally conclusions are 
drawn in section 5. 
 
 
2. Optimizer for automatic analog circuit design 
 
The optimizer utilizes the circuit simulator and optimization 
algorithm to design a circuit with desired specifications. The 
optimizer provides proper coordination between the circuit 
simulator and optimization algorithm by generating circuit 
net-list according to the parameters generated by optimization 
algorithm, initializing the circuit simulation, analyzing the 
simulator output and providing necessary data to the 
optimization algorithm to generate new set of parameters. The 
conceptual block diagram of the optimizer is illustrated in Fig 
1. First various circuit specifications are decided. The various 
circuit parameters with their upper and lower bounds are 
estimated. Generally for the CMOS circuits, the circuit 
parameters are width and length of various MOS transistors. 
With this information optimization algorithm generates the 
set of circuit parameters and according to this, the circuit for 
simulator is generated and simulated against pre-determined 
test cases. The simulation results are analyzed and error is 
calculated. According to calculated error, new set of 
parameters is generated by the optimization algorithm. The 
aim of the optimizer is to reduce the error. Here, we have used 
root mean square (RMS) error. The RMS error in percentage 
fe can be given by, 
 
𝑅𝑀𝑆	𝑒𝑟𝑟𝑜𝑟	𝑓𝑒 % = 𝐸,-

,./ 	×100	                     (1) 
  

𝐸, =
0															, 𝑖𝑓	𝑖56	𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑖𝑠	𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑
>?@AB?@
B?@

C
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																										

	(2)  

 
where, N is total number of specifications, DSi is  ith desired 
specification and OSi is ith obtained specification from 
simulation. The RMS error gives equal weight to all the 
specifications. Thus, optimizer tries to satisfy all the 
specifications equally. 
 
 
3. Optimization algorithms 
 
3.1 Artificial Bee Colony (ABC) algorithm 
The artificial bee colony algorithm is based on swarm 
optimization technique. It simulates the intelligent behavior 
of the artificial bees searching food for finding the global 
solution of the given optimization problem [9]. The 
performance of the ABC algorithm is compared with other 
evolutionary algorithms in [9] and [1] by solving different 
benchmark functions.  
 In ABC algorithm, the swarm of the artificial bees is 
divided in two groups: Employee bees and Onlooker bees. 
The Employee bees are later converted in to Scout bees. 
Consider an optimization problem with N dimensions and 
take swarm size 2M. The number of the employee bees and 
onlooker bees are same. This leads to M number of Employee 
bees and same number of Onlooker bees. The algorithm starts 
with the random initialization. Initially M numbers of food 
sources are picked up randomly and each one is evaluated for 
its fitness. Each food source represents potential solution to 
problem. Mathematically, each food source is model by N-
dimensional vector. Thus ith food source can be represented 
by, 

 
𝑋, = 	 𝑋,/, 𝑋,C, 𝑋,G, …… , 𝑋,- 	                          (3) 
 
 Each artificial bee, tries to improve its food source by 
sharing the information with other bees. During the process 
of food source improvement, only one dimension of food 
source Xi i.e. Xij is selected randomly and updated at a time. 
The single iteration of the algorithm can be divided in three 
phases: Employee bee phase, Onlooker bee phase and Scout 
bee phase. During Employee bee phase, each employee bee 
tries to find new food source Vi around assigned food source 
Xi, by updating single dimension of Xi, as follows, 
 
𝑉,J = 	𝑋,J + 	𝜙,J 𝑋,J − 𝑋NJ                                   (4) 
 
with, j∈{1,2,3,….,N} and selected randomly. Xkj is jth 
dimension of neighbor food source and k∈{1,2,3,….,M} and 
selected randomly. Φij is uniformly distributed random 
number between -1 and 1. The new food source Vi is evaluated 
for its fitness and greedy selection is applied between Xi and 
Vi.  
 Onlooker bees select certain food sources where the 
probability of finding better food source is higher and try to 
improve only these selected food sources same as Employee 
bees. Such probability associated with ith food source is given 
by, 
 
𝑝, = 	

O@
O@P

@QR
	                                                              (5) 

 
where, fi is a fitness associated with ith food source and can be 
calculated by, 
 

𝑓, = 	
/

/SOT@
,			𝑓𝑒, > 0

1 + 𝑓𝑒, ,			𝑓𝑒, < 0
		                                                   (6) 

 
 Thus, in Employee bee phase each food source undergoes 
improvement process, while only selected food sources are 
improved during Onlooker bee phase. In Scout bee phase, the 
food sources which failed to improve after certain 
predetermined trials are abandoned and instead of that new 
food sources are picked up randomly from the search space. 
The ABC algorithm is good at exploration but poor at 
exploitation [10]. 
 
3.2 Standard PSO algorithm 
The Particle Swarm Optimization (PSO) algorithm finds a 
solution of the given optimization problem by simulating the 
social behavior of species [11].  In PSO algorithm, each 
particle of the swarm represents the solution candidate. The 
particles of the swarm are assumed to move in the search 
space with the velocity associated with them. Each particle of 
swarm remembers the best location ever visited by it and the 
overall best position visited by the all particles. For the 
optimization problem with N dimensions, the position of the 
particle and velocity associated with them can be modeled by 
N dimensional vectors. Let us consider the current position of 
the ith particle is Xi(t) and velocity associated with is Vi(t). The 
new position of the ith particle, 𝑋, 𝑡 + 1  can be calculated by, 
 
𝑉 𝑡 + 1 = 	𝑤 ∙ 𝑉, 𝑡  

+	𝐶/ ∙ 𝑅/ ∙ 𝑃, 𝑡 − 𝑋,(𝑡)  
																													+𝐶C ∙ 𝑅C ∙ 𝑃\(𝑡) − 𝑋,(𝑡)                                  (7)  
 
𝑋, 𝑡 + 1 = 	𝑋, 𝑡 + 	𝑉, 𝑡 + 1 											                                   (8) 



Subhash Pate and Rajesh A Thakker/ Journal of Engineering Science and Technology Review 9 (1) (2016) 89-94 
 

 91 

 
where, w is an inertia weight factor, R1 and R2 are the 
uniformly distributed random numbers between 0 and 1, C1 
and C2 are acceleration constants, Pi represents the best 
position ever visited by ith particle and Pg is an overall best 
position. C1 and C2 are also called cognitive and social 
parameter respectively. Sometimes, instead of choosing a 
constant value of w, it is varied linearly between wup and wlow 
with iterations as follows, 
 
𝑤 𝑡 = 	𝑤]^ − 𝑤]^ − 𝑤_`a ∙ 5

5bcd
	                                              (9) 

 
where, t is a current iteration and tmax is maximum allowed 
iterations and wup > wlow. Such variations in value of w, 
promotes exploration in early stage of the optimization. 
Another concept is used widely with the standard PSO 
algorithm is velocity clamping. When absolute velocity of the 
particle in any dimension crosses predetermined upper limit 
Vmax, it is clamped at Vmax. The parameters of the standard PSO 
algorithms are w, C1 and C2. According to nature of 
optimization problem, values of these parameters can be 
tuned [12]. 
 
3.3 Modified PSO algorithm  
In standard PSO algorithm, the new position of the particle 
depends upon the current position of the particle, local best 
position Pi, global best position Pg and the velocity of the 
particle. Initially, when algorithm starts with random 
initialization, the swarm of the particle is diverse and as the 
algorithm progresses, the swarm loses its diversity. The 
swarm diversity is a very important factor for the PSO 
algorithm [13]. As long as swarm is diverse, the new solutions 
will be generated. As the swarm loses its diversity, the 
movement of the particle in the search space also reduces. 
When swarm diversity is lost completely, the velocity of 
particles become zero and their position remain unchanged. 
Thus, no new solutions will be generated. 
 

 
Fig. 2. Two-stage operational amplifier : circuit diagram 
 
 
 In modified PSO algorithm, we emphasize on maintaining 
swarm diversity. The movement of the particle is decided by 
Equ. 7 and 8. When the global solution does not improve after 
the algorithmic iteration, velocity of each particle is 
examined. If the absolute value of particular velocity 
component for all the particles fall bellow predetermined 
value Vmin, only that component for all particles is re-
initialized along with corresponding velocity component. 
When there is need to re-initialize more than one component, 
one is selected randomly and re-initialization is carried out 
only for that dimension along with corresponding velocity 

component. After such partial re-initialization of swarm, next 
partial re-initialization, if required, is carried out only after the 
fixed number of iterations (Is). The partial re-initialization of 
the swarm is not carried out over the complete search space. 
The partial re-initialization area in percentage for 
corresponding dimension around the global best position Pg 
is determined as follows, 
 
𝐴 = 𝑆 + 1 − 𝑆 ∙ 𝑓𝑔𝑏	×100                                           (10) 
 
 Where, S is constant value between 0 and 1, fgb is a RMS 
error for current global best position Pg. Such re-initialization 
scheme helps to maintain swarm diversity and improves the 
exploration capacity of the algorithm. Moreover, it also helps 
to avoid trapping of algorithm in local minima. 
 
 
4. Circuit design examples 
 
To compare the performances of ABC, PSO and MPSO 
algorithms, two analog CMOS circuits namely two-stage 
operational amplifier (Op-Amp) and bulk driven operational 
trans-conductance amplifier (OTA) are designed in 130nm 
CMOS technology. For MPSO algorithm, the values of 
parameters are set as follows: wup = 0.9, wlow = 0.2, C1 = 0.49, 
C2 = 1.99, Is = 3 and S = 0.25. For PSO algorithm, the designs 
of Op-Amp and OTA are carried out using two different set 
of parameters. For first case, the value of different parameters 
are set as suggested in [5] and they are wup = 0.9, wlow = 0.4, 
C1 = 1.49 and C2 = 1.49.  We call this case of PSO algorithm 
PSO1. For second case, we set the values of algorithmic 
parameters same as MPSO algorithm:  wup=0.9, wlow = 0.2, C1 
= 0.49 and C2 = 1.99. This second case of PSO is called 
PSO2. Each circuit is designed independently 25 times with 
MPSO, ABC, PSO1 and PSO2 algorithm. For the Op-Amp 
design, swarm size is set to 15. For the algorithm termination 
criteria, maximum numbers of circuit evaluations are used. 
This limit is set to 5000 for Op-Amp design case. For OTA 
design, swarm size is 12 and maximum circuit evaluations are 
10000. For the circuit simulation, NG-SPICE simulator is 
utilized. Whole optimizer along with algorithm is 
implemented with help of C++. The experiment is conducted 
on computer having following major specifications: 
Processor - AMD-8350, CPU clock rate - 4GHz, RAM - 4GB, 
OS - Ubuntu 12.04, Kernel - 3.13.0.66-generic. 
 
 4.1 Two stage Op-Amp 
The two stage CMOS operational amplifier (Op-Amp) is one 
of the most widely used analog circuit. It is a building block 
of ADC, amplifiers, mixer and signal conditioning circuits. 
The circuit of op-amp is illustrated in Fig 2 [14]. The set of 
desired specification is described in Table 1. The design 
parameters are width and length of the transistors, value of the 
current source I0 and capacitor CC. The circuit is designed in 
130nm to drive load of 0.05pF. The search space i.e. upper 
and lower bounds on width and length of transistor, value of 
I0 and value on CC, is illustrated in Table 2. The circuit is 
designed twenty-five times. Table 3 shows the average of 
obtained specifications and RMS error fe over 25 independent 
design runs. Table 4 and 5 show the best and worst obtained 
specifications, respectively. The variations in the RMS error 
fe with the circuit evaluations is shown in Fig. 3. The Table 6 
shows the number of times zero RMS error is obtained or in 
other words all the specifications are satisfied 
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Fig. 3. Two stage Op-Amp : Average RMS error vs circuit evaluations 
 
 
Table 1.  Op-Amp : Desired Specifications 

Specification Desired value 
Gain > 80 dB 
UGB > 100 MHz 
Phase Margin (PM) > 62° 
Power consumption (PC) < 20 µW 
Rise Slew Rate (RSR) ≥60 V/µS 
Fall Slew Rate (FSR) ≥60 V/µS 
PSRR ≥80 dB 
CMRR ≥75 dB 

 
Table 2. Op-Amp : Search space for design variables 

Parameter Search Space 
W1 to W9 (µm) 0.2 to 10 
L1 to L5 (µm) 0.2 to 1  
I0 (µm) 0.5 to 10  
CC (pF) 0.001 to 1  
VDD (V) 1.2  

. 
Table 3. Op-Amp : Average of obtained specifications, RMS 
error and CPU time for design over 25 independent runs 

 MPSO ABC PSO1 PSO2 
Gain (dB) 80.2 78.9 78.5 76.8 
UGB (MHz) 105.5 98.2 102.3 99.08 
PM ( o ) 63.2 61.6 61.8 60.9 
PC (µW) 18.9 19.6 19.1 19.2 
RSR (V/µS) 76.7 72.0 71.5 74.0 
FSR (V/µS) 63.3 65.2 62.7 64.4 
PSRR (dB) 87.4 85.9 85.9 86.5 
CMRR (dB) 76.8 76.6 77.9 76.4 
fe (%)  0.054 5.45 3.04 8.37 
CPU Time (S) 281.6 401.3 354.2 361.9 

 
 From the obtained results following observations can be 
made. 
• In 25 independent design runs of Op-Amp, the average 

RMS error is only 0.054% with MPSO in contrast with 
5.45% with ABC, 3.04% with PSO1 and 8.37% with 
PSO2. 

• Out of 25 design runs, MPSO designs Op-Amp 21 times 
with zero RMS error and thus obtaining all 
specifications while ABC is successful only 2 times, 
PS01 and PSO2 are for 7 times. 

• The worst obtained design with MPSO RMS error is 
0.59% which is much less than 17.2% with ABC, 12.2% 
with PSO1 and 20.1% with PSO2. 

• The average CPU time required to design Op-Amp with 
MPSO is 281.6 seconds. That is 401.3 seconds for ABC, 
354.2 seconds for PSO1 and 361.9 seconds for PSO2. 

 
 Table 4. Op-Amp : Best obtained specifications and RMS 
error over 25 independent runs 

 MPSO ABC PSO1 PSO2 
Gain (dB) 81.2 80.3 80.0 80.0 
UGB (MHz) 104.9 111.7 100.4 100.1 
PM ( o ) 63.3 63.2 63.7 62.5 
PC (µW) 19.8 19.5 19.7 19.3 
RSR (V/µS) 80.8 76.6 74.6 72.1 
SR (V/µS) 60.9 60.6 60.0 62.4 
PSRR (dB) 87.3 81.2 104.7 89.2 
CMRR (dB) 75.4 80.8 75.4 76.21 
fe (%)  0.0 0.0 0.0 0.0 

 
The obtained results for Op-Amp design show the robustness 
of the modified PSO algorithm compared to standard PSO 
algorithm and ABC algorithm 

 
Fig 4. Bulk-driven OTA : circuit diagram 
 
 
Table 5. Op-Amp : Worst obtained specifications for design 
over 25 independent runs 

 MPSO ABC PSO1 PSO2 
Gain (dB) 79.7 74.5 75.2 64.6 
UGB (MHz) 99.5 90.4 93.5 98.3 
PM ( o ) 61.8 60.0 59.2 59.7 
PC (µW) 19.7 19.9 21.2 20.1 
RSR (V/µS) 81.5 53.0 59.4 99.5 
FSR (V/µS) 68.6 58.5 59.1 63.6 
PSRR (dB) 105.5 77.4 77.6 77.2 
CMRR (dB) 74.9 80.1 84.5 72.5 
fe (%)  0.59 17.2 12.2 20.1 

 
Table 6. Op-Amp : Number of times all the specifications are 
satisfied 

Algorithm No of times zero RMS error is 
obtained 

MPSO 21 
ABC 2 
PSO1 7 
PSO2 7 

 
4.2 Bulk-driven OTA 
In the bulk-driven circuit technique, the voltage signal is 
applied at the bulk terminal of the MOSFET. In low voltage 
application, i.e. supply voltage is less than 1V; this technique 
enhances the performance of the circuit by overcoming the 
limitations imposed by the threshold voltage. Another 
advantage of bulk-driven technique for low voltage 



Subhash Pate and Rajesh A Thakker/ Journal of Engineering Science and Technology Review 9 (1) (2016) 89-94 
 

 93 

application is that, it does not require any modification in the 
structure of MOSFET [16-18]. 
 The operational trans-conductance amplifier (OTA) is 
used widely to drive large capacitive load. The circuit 
diagram of the bulk driven OTA is shown in Fig.4. This 
circuit is proposed in [15]. The set of desired specifications 
and simulation results obtained with 350nm technology in 
[15] are shown in Table 7.The design parameters with their 
upper and lower bounds are illustrated in Table 8. The circuit 
is design twenty-five times indecently in 130nm technology 
to drive load of 15pF. The obtained results are illustrated in 
Tables 9, 10, 11.  The variation in average RMS error with the 
circuit evaluations is illustrated in Fig. 5.  
 
Table 7. Bulk-driven OTA : Desired Specifications 

Specification Desired value Results of [15] 
Gain (dB) > 45 41.7 
UGB (MHz) > 15 10 
PM ( o ) > 60° 58 
PC (µW) < 200 200 
RSR (V/µS) ≥10 8.9 
FSR (V/µS) ≥10 8.3 

 
 
 

 
Fig. 5. Bulk-driven OTA : Average RMS error vs circuit evaluations 
 
 
Table 8. Bulk-driven OTA : Search space for design variables 

Parameter Search Space 
Width of all transistors (µm) 1 to 100 
Length of all transistors (µm) 0.2 to 5 
IB (µA) 3 to 50 
IBM  (µA) 3 to 50 
VDD (V) 0.6 

 
Table 9. OTA : Average of obtained specifications, RMS 
error and CPU time for design over 25 independent runs 

 MPSO ABC PSO1 PSO2 
Gain (dB) 44.5 42.1 42.6 40.9 
UGB (MHz) 18.7 16.6 18 16.4 
PM ( o ) 60.5 58.9 59.4 57.3 
PC (µW) 124.5 117.9 120.8 124.7 
RSR (V/µS) 13.5 12.2 12.5 13.5 
FSR (V/µS) 14.2 12.5 12.9 15.4 
fe (%)  1.32 4.70 5.63 120.7 
CPU Time (S) 342.1 462.1 405.8 432.6 

 

Table 10. OTA : Best obtained specifications and RMS error 
for design over 25 independent runs 

 MPSO ABC PSO1 PSO2 
Gain (dB) 45.0 44.9 46.6 46.1 
UGB (MHz) 15.1 22.1 16.6 17.7 
PM ( o ) 61.2 59.9 61.1 60.7 
PC (µW) 94.6 90.8 81.1 82.1 
RSR (V/µS) 13.5 10.6 10.7 14.4 
FSR (V/µS) 13.7 20.5 10.6 15.9 
fe (%)  0.0 0.22 0.0 0.0 

 
 In the design of the bulk-driven OTA, the performance of 
modified PSO is found better than standard PSO and ABC 
algorithms. The average RMS error is 1.32% for the modified 
PSO algorithm, 5.63% for the PSO1 algorithm, 12.07% for 
PSO2 and 4.70% for the ABC algorithm. In twenty-five 
independent runs, modified PSO algorithm has designed OTA 
successfully 13 times, while ABC, PSO1 and PSO2 
algorithms are only successful zero time, 6 times, 3 times 
respectively. The average CPU time for designing bulk driven 
OTA is also less in case of the modified PSO algorithm. With 
automatic circuit design technique, obtained results are better 
than obtained with manual design of [15]. 
 
Table 11. OTA : Worst obtained specifications and RMS 
error for design over 25 independent runs 

 MPSO ABC PSO1 PSO2 
Gain (dB) 42.5 40.0 35.9 39.0 
UGB (MHz) 18.5 14.8 23.2 12.6 
PM ( o ) 59.6 56.3 57.3 44.3 
PC (µW) 149.2 100.9 136.1 90.5 
RSR (V/µS) 12.8 15.8 12.6 9.9 
FSR (V/µS) 9.89 11.1 9.8 84.5 
fe (%)  5.51 12.62 20.66 33.04 

 
 
Table 12. OTA : Number of times all the specifications are 
satisfied 

Algorithm No of times zero RMS error is obtained 
MPSO 13 
ABC 0 
PSO1 6 
PSO2 3 

 
 
5. Conclusion 
 
In this work, we have demonstrated application of the 
computational intelligence based techniques such as standard 
PSO algorithm and ABC algorithm to solve the multi-
dimension and multi-constrained problem of the analog 
CMOS circuit design and synthesis. We have also proposed 
modified PSO algorithm for the automatic circuit design. The 
performances of the standard PSO algorithm, ABC algorithm 
and modified PSO algorithm are compared by designing the 
two stage op-amp and bulk driven OTA. The results show that 
the performance of the modified PSO algorithm is far better 
than that of standard PSO algorithm and ABC algorithm. For 
the two-stage Op-Amp, the average RMS error with modified 
PSO algorithm is 0.054% while that is 5.45% for ABC, 3.04 
% for the PSO1 algorithm and 8.37% for the PSO2 algorithm. 
In case of the bulk driven OTA, the average RMS error with 
modified PSO algorithm is almost three and half times smaller 
than that of ABC algorithm. 
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