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Abstract 
 

An alternating current induction motor is a nonlinear, multi-variable, and strong-coupled system that is difficult to 
control. To address this problem, a novel control strategy based on nonlinear differential geometry theory was proposed. 
First, a five-order affine mathematical model for an alternating current induction motor was provided. Then, the feedback 
linearization method was used to realize decoupling and full linearization of the system model. Moreover, a general and 
simplified control law was adopted to facilitate practical applications. Finally, a controller was designed using the pole 
assignment method. Simulation results show that the proposed method can decouple the system model into two 
independent subsystems, and that the closed-loop system exhibits good dynamic and static performances. The proposed 
decoupling control method is useful to reduce the system complexity of an induction motor and to improve its control 
performance, thereby providing a new and feasible dynamic decoupling control for an alternating current induction 
motor. 
 

 Keywords: Induction Motor; Nonlinear Differential Geometry; Decoupling Control; Full Linearization 
 __________________________________________________________________________________________ 
 
1. Introduction 
 
An induction motor (IM) has the advantages of small 
friction, few mechanical noise, high running speed, and low 
cost, among others [1]; hence, it is widely used in energy 
transportation, aerospace, industrial machinery, electronic 
communications, and many other fields, and has achieved 
good results [2], [3]. However, an IM is a complex multi-
input multi-output (MIMO) nonlinear system with a strong 
coupled relationship, which makes effectively controlling 
rotational speed and rotor flux, as well as achieving good 
control performance, difficult [4], [5]. Enabling an IM to 
perform decoupling control is important because doing so 
can improve system stability and reduce the influence of 
noise. Therefore, realizing decoupling control and full 
linearization of an IM has been a focus in the field of 
alternating current (AC) drives. 
 
 
2. State of the art 
 
Numerous researchers have proposed various methods to 
solve the aforementioned problem; among which, the 
nonlinear differential geometry (NDG) method has 
increasingly demonstrated its superiority in decoupling and 
linearizing multi-variable nonlinear coupling systems [6–8]. 
Liao [9] conducted a comparative study of two decoupling 
control methods, namely, differential geometry and classical 

vector control. The results showed that vector control could 
only realize static decoupling, whereas differential geometry 
could realize full dynamic decoupling. Therefore, the 
differential geometry method is superior to the classical 
vector control method in many applications. Meng [10] 
introduced Kalman filtering for linear decoupling control to 
observe load torque change in an IM. This method could 
effectively track the dynamic parameters of an IM online 
and address the problem of input–output linearization, which 
could be affected by the variation parameters of the motor. 
The simulations showed that this technique was feasible and 
could achieve satisfactory results. Cao Li [11] designed a 
control system for a bearingless synchronous reluctance 
motor based on differential geometry theory and then set up 
the mathematical models for the radial suspension force and 
the torque subsystems. The simulation results showed that 
this control strategy could realize decoupling control and 
exhibited good dynamic and static performances. 
Yazdanpanah [12] designed a sliding mode torque and flux 
controller for a three-phase IM; this controller was combined 
with an adaptive input–output feedback linearization (IOFL) 
technique to preserve system robustness with respect to 
variations and uncertainties in stator and rotor resistances].  
 The experiments showed that this strategy demonstrated 
good performance. Abootorabi Zarchi [13] introduced a 
nonlinear speed tracking controller for a three-phase 
synchronous reluctance motor based on IOFL by 
considering the different control strategies related to this 
motor. The simulation and experimental results indicated 
that this approach was capable of decoupling control and 
exhibited good performance. Alonge [14] introduced the 
theoretical formulation of the IOFL control technique 
applied to linear IMs. The theory described the control 
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design criteria by considering the constraints on the control 
and controlled variables that arose from applying this control 
technique in a real scenario. Afterward, they [15] described 
the set of tests in both the numerical simulations and the 
experiments, which presented achievable improvements in 
the dynamic performance of the control system.  
 The aforementioned methods have achieved good results 
to a certain extent. However, they are unable to realize 
dynamic decoupling and full linearization simultaneously. In 
addition, some of these methods have high computational 
complexity. Thus, the mathematical model for an IM system 
is first studied in the current research. Then, the NDG 
method is used for dynamic decoupling control and system 
linearization. Finally, pole assignment control techniques are 
applied to the linearization system during synthesis and 
simulation. 
 The remainder of this paper is organized as follows. 
Section 3 describes the mathematical model for an IM and 
its decoupling control technique based on NDG, along with 
the design of the controller. Section 4 presents several 
simulations to evaluate the performance of the proposed 
method. Conclusions are provided in Section 5. 
 
 
3. Methodology 
 
3.1 Mathematical Model for the IM 
The mathematical model discussed in this paper is that for 
the AC IM powered by a voltage source in a two-phase 
arbitrary rotation d–q coordinate system [16]. When the AC 
IM is powered by a voltage source-based inverter, the input 
control is a three-phase stator voltage. Therefore, the stator 
and the rotor are both converted into a two-phase arbitrary 
rotation d–q coordinate system to facilitate analysis. In this 
manner, the dynamic mathematical model for the AC IM can 
be obtained. 1 sdx i= and 2 sqx i=  are defined as the 
component of the stator current at the d- and q-axes, 
respectively; 3x ψ= is the magnitude of the rotor flux; 

4x φ= is the phase angle of the rotor flux relative to the d-
axis; 5 rx ω= is the rotor angular velocity; 1 sdu u= and 

2 squ u=  are the component of the stator voltage at the d- 

and q-axes, respectively; 3 1u ω= is the rotation angular 
velocity of the d–q coordinate system; sL and rL  are the 
self-inductance of the stator and the rotor, respectively; 
mL is the mutual inductance between the stator and the rotor; 

1R and 2R  are the resistance of the stator and the rotor, 
respectively; is the number of pole pairs; and J is the 
moment of inertia of the system. The affine nonlinear form 
of the system model can be given as follows: 
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 Thus far, we have obtained an effective mathematical 
model for the AC IM, and the control method designed in 
the following sections is based on this model. 
Simultaneously, we also provide the following definitions, 
which are  used in the subsequent sections: 
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3.2 IM Control Based on NDG 
In this section, we describe how decoupling control and full 
linearization of the IM are realized based on the NDG 
method. The vector relationship degree is first calculated as 
follows. 
 
3.2.1 Calculating the Vector Relationship Degree 
The vector relationship degree is one of the most important 
basic concepts of NDG theory [17]. Consider a nonlinear 
single–input single–output system as follows: 
 

( ) ( )
( )

x f x g x u
y h x
= +
=

.                                  (6) 

 
 If the following two conditions hold, then the 
relationship degree r  exists at point 0x . 
 
(a) For all the x  in a neighborhood of 0x  and 1k r< − , 

( ) 0k
g fL L h x = . 

(b) 1 0( ) 0k
g fL L h x− ≠ , 

Where 0( )g fL L h x  is the LI derivative [18] operating on 

( )h x . 
For the following MIMO system: 
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 Where ( )f x  and ( )ig x  are the smooth vector fields, 

( )ih x is a smooth function defined in an open set of nR , and 
the number of the input channels is equal to that of the 
output channels. 
 If the following two conditions hold, then the 
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 According to the definition of the introduced vector 
relationship degree, the following formulas can be obtained 
for the system model described in Eq. (1): 
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 For the output 3( )h x ,  
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 Thus, we obtain the vector relationship degree 3 1r = . 
According to Eq. (8),   
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 The determinant 3
32det ( ) 2 m

r

K L
A x x

Tσ
= −  is nonsingular 

when 3 0x ≠ , whereas it is singular when 3 0x = ; therefore, 
the overall relationship degree of the system 
is 1 2 3 5r r r r= + + = . The dimension of the system is also 5, 
which can ensure full linearization of the system. 
 
3.2.2 Decoupling Control and Full Linearization 
A coordinate transformation ( )z xφ=   is set as follows: 
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The control input is selected as 
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 Under the control operation in Eq. (25), the system in Eq. 
(24) can be divided into three independent subsystems. They 
are decoupled from one another, and no nonlinear 
component is present after linearization, which indicates that 
full linearization of the system is realized. 
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3.3 System Controller Design 
Notably, Eq. (25) is not the only control law for the system. 
Moreover, it is also slightly complex. To make the control 
law easy to realize in practical applications, an appropriate 
simplification procedure should be performed.  
 
3.3.1 Control Law 
The general form of the control law is 
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 Evidently, the new control law given in Eq. (29) is 
significantly better than the old one; it can also be 
considerably simplified if ( )xΛ and ( )xξ are selected 
appropriately. To enable the original system to still perform 
full linearization using the new control law, we set 
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 On the basis of the new control law given in Eq. (34), the 
system can be transformed into the following three 
decoupling subsystems after simplification, and full 
linearization can still be realized.  
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 In addition, 3z is the argument φ , and the d–q 
coordinate system rotates by the synchronous speed lω  of 
the stator with respect to the three-phase coordinate system 
of the stationary stator; therefore, 3 0z φ= = . If we set 

3 0v = , then the system presented in Eq. (35) can be further 
simplified into two decoupling subsystems (i.e., the rotating 
speed and flux subsystems). 
 
3.3.2 Control Design 
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+ − + −

         (38) 

 

 Similarly, 21
rd z

dt
ω

= and 21
22 21 2

dz a z v
dt

= + ; therefore, 

2

22 3 42 ( )r r r
r ref

d d da K K
dt dtdt

ω ω ωω ω= − − −            (39) 

 
 The transfer function of the rotating speed subsystem is 
 

3
2 2

4 22 3

( )
( )

( ) ( )
r

ref

KsG s
s s K a s K

ω
ω

= =
+ − +

             (40) 

 
 Finally, we can obtain the closed-loop transfer function 
of the original system as follows: 
 

1
2

2 12 1 11

3
2

4 22 3

( )
( ) ( )

( )
( )

r

r

KG s
s K a s K a

K
G s

s K a s K

ψ

ω

⎧ =⎪ + − + −⎪
⎨
⎪ =⎪ + − +⎩

           (41) 

 
 Where 1 2( , )K K  and 3 4( , )K K  are undetermined 
constants, which can enable the system to trace the input and 
output stably if they are selected appropriately. 
 Fig. 1 presents the structure diagram of the control 
system designed in this study. In the figure, the part within 
the dashed box shows the decoupling and linearization 
process of the nonlinear system, whereas the part outside the 
box shows the designed controller with input tracing and 
stable output achieved via the pole assignment method.  
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Fig.1. Structure diagram of the nonlinear decoupling control system for an IM. 
 
 
4. Results Analysis and Discussion 
 
In this section, two tests are presented to verify the 
effectiveness of the controller designed in this study. The 
simulation target is an AC IM that satisfies the system model 

presented in Eq. (1). The main parameters of this motor 
include the following: rated power = 2 KW, rated rotating 
speed = 185 rad/s, 2pn = , R1 = 0.685 Ω, R2 = 0.847 Ω, Ls 
= 0.085 H, Lr = 0.0863 H, Lm = 0.0817 H, rated flux = 0.52 
Wb, rated load = 13 Nm, and J = 0.04 kgm2. The definitions 
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of all the symbols are the same as those in Section 3. For the 
designed closed-loop controller, the following conditions 
should be satisfied: overshoot 5%σ < , peak ts ≤ 0.1 s, and 
static error 0spe = . Thus, we can calculate the undetermined 

constant 1 2( , ) (1435, 165)K K = − , 3 4( , ) (2503, 165)K K = − . 
 In the first test, we set the rotating speed ω = 120 rad/s 
and the flux ψ = 0.5 Wb. The rotating speed ω  will change 
from 120 rad/s step to100 rad/s at 1.5 s. We should 
determine how the flux will change during this process.  
 Figs. 2 and 3 show the response curve of the rotating 
speed and the flux, respectively. As shown in the figures, the 
rotating speed exhibits a fast response with a slight 
overshoot, which is within the acceptable range. The final 
output is stable at the set value. Simultaneously, the 
response of the flux is also fast and stable; moreover, it is 
unaffected by the step change in rotating speed.  
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Fig. 2. Response curve of the rotating speed in test 1. 
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Fig. 3. Response curve of the flux in test 1. 
 
 
 In the second test, we set the flux change from 0.5 Wb 
step to 0.4 Wb at 2.0s and then observe how rotating speed 
will change during this process. 
 Similar to test 1, Fig. 4 and 5 shows that during the 
mutation process, the response of the flux is extremely fast, 
the overshoot is within the acceptable range, and the steady-
state error is nearly equal to zero. Meanwhile, the rotating 
speed of the motor does not significantly change and is 
substantially maintained at 120 rad/s, which demonstrates 
good robustness. 

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

t/s

ψ r
/W
b

 
Fig. 4. Response curve of the flux in test 2. 
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Fig. 5. Response curve of the rotating speed in test 2. 
 
 
 In summary, the controller based on the NDG method 
designed in this study can realize decoupling and full 
linearization for an AC IM. The motor model can be 
decoupled into two independent subsystems and exhibits 
good steady and dynamic performances. 
 
 
5. Conclusions 
 
This study proposes a new control strategy to decouple an 
AC IM based on the NDG approach. The vector relationship 
degree is used to determine whether the model can achieve 
full linearization. Meanwhile, the pole assignment method is 
used to design the control law and the controller. Several 
simulations are conducted to evaluate the performance of the 
proposed decoupling control method for an IM. The main 
conclusions of this study are as follows. 
 (1)A five-order affine mathematical model for an IM is 
established. This model can effectively describe and reflect 
the characteristic of an IM and achieve good balance 
between model accuracy and complexity. 
 (2)By calculating the vector relationship degree of the 
model presented in Section 3.1, we determine that the vector 
relationship degree  is equal to the dimension of the system. 
This finding indicates that the established model can achieve 
full linearization. Therefore, we use a simple coordinate 
transformation to realize system decoupling. 
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 (3)A general and simple control law is established, and a 
controller is designed based on this law using the pole 
assignment method. The simulation results show that the 
proposed method exhibits good dynamic and static 
performances. The induction model can be decoupled into 
two independent subsystems, and a change in one subsystem 
does not affect the other subsystem. Meanwhile, both 
response time and overshoot satisfy the requirement.  
Nevertheless, the proposed method requires an accuracy 
system model and several important parameters should be 
known in advance. Such condition is difficult to satisfy in 

practical applications. In the future, we will attempt to 
combine this method with an adaptive parameter 
identification technique to solve the problem of model and 
parameter uncertainty. 
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