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               Abstract 
 

A fast analysis approach was developed to improve the computational efficiency of seismic analysis for structures under 
non-stationary seismic excitations. A high-pier railway bridge was selected as a case study to evaluate the proposed fast 
approach. First, non-stationary excitation was translated into a series of deterministic transient analyses. Second, a modified 
high-precision integration method was introduced to reduce the number of transient analyses to two. Finally, a seismic 
response analysis of the high-pier railway bridge subjected to non-stationary ground motions was conducted with the 
secondary development platform of the general finite element software ANSYS. The fast analysis technique and ANSYS 
were combined. The results show the proposed fast analysis technique can model seismic non-stationary and spatial 
variability and can be easily extended to practical engineering applications.  
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1. Introduction 
 
Many scholars have conducted detailed studies on 
calculation theory and its application to the dynamic 
responses of complex structures under non-stationary 
stochastic earthquake excitation. Numerous findings have 
been obtained, and these findings play an important role in 
promoting the uses of the stochastic vibration method of 
non-stationary excitation in practical engineering 
applications [1-4]. Given the characteristic randomness of 
earthquakes, the random vibration method (RVM) is widely 
utilized and accepted in the seismic analysis of long-span 
structures and has been adopted by several seismic design 
standards [5-7]. Lin [8] proposed the pseudo-excitation 
method (PEM), which is also known as the fast complete 
quadratic combination method, because RVM requires 
extensive computation for the seismic analysis of structures 
under tri-directional stochastic excitations. With the 
emergence of complex structures, further improvement of 
the computational efficiency of a complex structural 
dynamic response under non-stationary seismic excitation is 
necessary.  
 
 
2. State of the art 
 
Most previous scholars adopted advanced pseudo-excitation 
methods to deal with non-stationary seismic excitation [1-3]. 

Computational efficiency was improved by several orders of 
magnitude; however, given that finite element software 
lacked calculation modules for pseudo-excitation method, 
engineers had to design a program for the pre-treatment, 
calculation, and post-processing of the responses of 
structures subjected to non-stationary seismic excitation. To 
apply the computational theory of non-stationary seismic 
excitation in stochastic vibration methods to practical 
engineering even without programming in pre-treatment and 
post-processing, studies have been conducted on its 
applications in general finite element software, including 
whether stochastic vibration excitations from smooth to non-
stationary can be realized in a general finite element 
software; this realization would extend ground motion 
excitation from 1D to 3D. Additionally, stationary ground 
motion would be fully considered in multi-support and 
multi-dimensional excitation analyses of large-span 
structures [9-11]. To fully consider the non-stationary nature 
of ground motion, the pseudo-excitation method with an 
absolute displacement direct approach has been utilized in 
literature [12]. Calculations under multi-support, multi-
dimensional, and non-stationary conditions have been 
achieved in ANSYS and have provided the impetus for the 
consideration of the non-stationarity of ground motion. 
However, this method has low efficiency and requires a time 
history analysis of all discrete frequencies. Given this 
enormous workload, enhancing computational efficiency is a 
must. The structural dynamic response of a three-cross 
twelve-story frame structure under non-stationary excitation 
was calculated through explicit methods in previous studies 
[13-14]. The results indicated that the combination of time-
domain explicit method and pseudo-excitation method 
significantly improves computational efficiency. However, 
these studies only considered lateral loads under uniform 
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and non-uniform excitations, which are different from 
complex multi-dimensional multi-support seismic excitation. 
Therefore, the structural response under non-stationary 
seismic excitation requires further study. 
 A fast simulation method was developed in the current 
study. The method was implemented in ANSYS software. 
First, the structural dynamic response under non-stationary 
seismic excitation was deduced theoretically. Second, the 
theoretical solution of the response with the SDOF structure 
was compared with the results calculated by the proposed 
method. The results show that the proposed method is 
rational, efficient, and correct. Finally, a 3D numerical finite 
element model of a high-pier railway bridge located in 
western China was established in ANSYS to conduct a 
structural response analysis under non-stationary seismic 
excitation. The improved high-precision integration method 
can be applied to practical engineering. 
 
 
3. Methodology 
 
3.1 Pseudo-excitation method in seismic analysis of 
structures subjected to tri-directional seismic excitations 
The equations of motion for a discretized linear, n-degree-of 
freedom structural system subjected to m directional support 
motions (three translational components) can be expressed in 
a partitioned matrix form in the global coordinate system as 
follows [15]: 
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 Where vector { } { }1 1 33

, , , T
b mm
X X X X ××

= K represents the 
enforced displacements of m supports, 
{ } { }1 1 33

, , , T
s nn
X X X X ××

= K denotes the vector of absolute 
displacements of the slave degrees of freedom (DoFs), and  

{ } { }1 1 33
,P , ,P T

b mm
P P ××

= K is the vector of seismic forces at 
structural supports. ,M C , and K are the mass, damping, and 
stiffness matrices, respectively. The subscripts b and s refer 
to the master and slave DoFs, respectively. bsM , bsC , and 

bsK  denote the transpose of matrices sbM , sbC , and sbK , 
respectively. The lumped mass model is assumed in this 
study, i.e., sbM  is null.  
 Matrix manipulation in the second block row of Eq. (1) 
results in 
 

  Mbs ⋅ !!Xs + Mbb ⋅ !!Xb +Cbs ⋅ !Xs +Cb ⋅ !Xb + Kbs ⋅ Xs + Kb ⋅ Xb = Pb
     (2) 

 
where the vector of seismic forces, bP , can be expressed in 
terms of the mass of supports Mbb and ground acceleration 
üb as follows:  
 

  Pb = Mbb ⋅ !!ub
                                          (3) 

 
Eq. (2) can then be rewritten as 
 

  Mbs ⋅ !!Xs + Mbb ⋅ !!Xb +Cbs ⋅ !Xs +Cb ⋅ !Xb + Kbs ⋅ Xs + Kb ⋅ Xb = Mbb ⋅ !!ub
        (4) 

 
Multiplying 1

bbM −   on both sides of Eq. (4) results in 
 

   

Mbb
-1 Mbs ⋅ !!Xs + Mbb ⋅ !!Xb +Cbs ⋅ !Xs +( + Kb ⋅ Xb )

= Mbb
-1 ⋅ Mbb ⋅ !!ub

 (5) 

 
A very large value can be assigned to Mbb. Then, -1 0bbM → , 

and -1
bb bsM M⋅ , -1

bb bsM C⋅ , -1
bb bbM C⋅ , -1

bb bsM K⋅ , -1
bb bbM K⋅ are 0. 

Accordingly, 
 

  
!!Xb = !!ub                                          (6) 

 
 If the supported mass matrix is sufficiently large and a 
sufficiently large number has been assigned to the 
supporting mass matrix of the general mass matrices, then 
the ground acceleration in the supporting points can be equal 
to the seismic response acceleration. As a result, Eq. (2) can 
be easily solved. 
 Under uniform-tuning non-stationary excitation, the 
ground supporting force is expressed as 

 

  Pb = Mbb ⋅ !!Xb = Mbb ⋅G t( ) ⋅ !!ub t( )                         (7) 

 
where G(t) is the determining time-tuning function and üb(t) 
is a stationary random process. 
 

    

G t( ) = diag[G1x t( ),G1y t( ),G1z t( ),G 2x t( ),G 2y t( ),
G 2z t( ),!,G mx t( ),G my t( ),G mz t( )]

     (8) 
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In practical engineering, the ground motion time-tuning 

function is presumed to be consistent, that is, 
 

 
Gmx t( ) = Gmy t( ) = Gmz t( ) = Gg t( )                 (10) 

 
3.2 Modeling of tri-directional spatially varying ground 
motions and determination of pseudo excitation forces 
The cross-power spectral density function of tri-directional, 
non-stationary, spatially varying ground motions at m spatial 
points can be expressed as  
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where each sub-matrix element Skl(iw,t) is a 3×3 matrix 
corresponding to two horizontal (x, y) and one vertical (z) 
components of tri-directional ground motions; it is given by 
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The power spectral density functions of the horizontal 

components of tri-directional ground motions are assumed to 
be similar, and the correlation coefficients between the 
horizontal and vertical components are assumed to be 0.6. 
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( ) ( ) ( ) ( )klxx klyy klxy klyxS i , S i , S i , S i ,t t t tω ω ω ω= = =         (13) 
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According to the theory of the evolutionary power 

spectrum for non-stationary random processes, the elements 
of the cross-spectral density matrix are defined as 
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where Gkkxx(t) and Skkxx(iω) are the uniformly modulating 
function and auto-power spectral density function of the x 
component of tri-directional ground motions at the kth 
spatial support, respectively; ρklxx(iω) are the uniformly 
modulating function and auto-power spectral density 
function of the x component of tri-directional ground 
motions at the kth spatial support, respectively. 

The power spectral density matrix S0(iω,t) of tri-
directional non-stationary spatially varying ground motions 
can be decomposed as 
 

( ) ( ) [ ] [ ]{ }{ } [ ][ ] ( )0 0 0, * *
TTTT

CP CPS i t P P G t V S q q S V G tω = = ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ (16) 

 
where P is the pseudo-force matrix with a dimension of 
3m×r, r is the rank of matrix S0(iω,t), and superscripts * and 
T refer to the complex conjugate and transpose, respectively.  

The vector of SCP has a dimension of 3 m × 3 m and is 
given by  
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where SCPmx(ω) the denotes power spectral density function 
of the x component of ground motions in the mth spatial 
support. 
 The vector of V with a dimension of 3 m × 3 m is given 
by 
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where Tmx represents the time at which the x component of 
ground motions propagate to the mth support. The wave-
passage effect is reflected in vector V. 
 The vector of G(t) has a dimension of 3 m × 3 m and is 
given by 
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where Gmx(t) is a modulating function of the mth support in 
x direction. Owing to Eq. (10), Eq. (19) can be simplified as 
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[R] is the lagged coherence matrix provided by 
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where N = 3 m and [R] is a definite or semi-definite 
symmetric matrix. The rank of [R] is greater than 1 and can 
be decomposed as the summation of non-zero eigenvalues 
{φ}j(j = 1,2, …,r,r ≤ 3m), which is given by  
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The pseudo-excitations can be obtained based on the 

coherence level of the spatially varying ground motions. 
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 Incorporating the second item in Eq. (23) into Eq. (7) 
results in 
 

·b bP M P=                                              (24) 
 

The pseudo responses can then be derived after obtaining 
the pseudo-excitations at different coherence levels. 

The pseudo response of absolute displacement ajy% ,with 

respect to the jth eigenvalue can be obtained as follows: 
 

  
!yaj = α jSCP ω( )I j t( )                            (25) 

 
where 
 

( ) ( ) ( ) { }
0

t i
j j
I t h t G V e dωττ τ ϕ τ= −∫              (26) 
 

The power spectral density of the pseudo response of 
absolute displacement under partially coherent tri-directional 
non-stationary ground motions can be expressed as 
 

   
SXS XS

ω ,t( ) = !yaj
* !yaj

T
j=1

r∑ = I j
*

j=1

r∑ I j
Tα jSCP ω( )  (27) 

 
Similarly, the power spectral densities of the pseudo 

response of absolute displacement  !ya  under fully coherent 
and completely incoherent spatial ground motions can be 
obtained, as shown below. 
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Fully coherent: 
 

   
SXS XS

ω ,t( ) = !ya
* !ya

T = I0
*I0

T SCP ω( )                       (28) 

 
where  
 

( ) ( ) ( ) { }0 00
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Completely incoherent: 
 

   
SXS XS
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T = I *I T SCP ω( )                       (30) 
 
where  
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0

t iI t h t G Ve dωττ τ τ= −∫                                (31) 

 
According to Eqs. (26), (29), and (31), transient analysis 

and calculation need to be completed at each frequency point. 
Although the direct-solving pseudo-excitation method saves 
time compared with traditional stochastic vibration theory, 
more calculations of transient analysis are required when the 
discrete points are excessive; thus, the method is more time 
consuming than the new method proposed in this study. 
With the improved high-precision integration method and its 
realization in a general finite element software, the structural 
response can be determined at any node if two transient 
analyses are ready. This scenario significantly reduces the 
computation time. Reduced computation time is convenient 
for engineering applications. Matrix manipulation in the first 
block row of Eq. (1) to construct a pseudo-excitation force 
results in 
 

   Mss
!""Xs +Css
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!Xs = − !Y ω ,t( )                  (32) 

 
where 
 

   
!Y ω ,t( ) = Mbb ⋅Pb = Mbb ⋅Pb ω ,t( )                  (33) 

 

   
!Y ω ,t( )  is the non-stationary stochastic excitation time 

history under the determined frequency points. 
 The dynamic equations under the determined frequency 
points in Eq. (32) can be written as equations of state [15-
16]. 
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The general solution of Eq. (32) is   
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where Hte is the exponential matrix, a discrete integral of 
Eq. (36). By setting the time step to Δt and using the 
recursive method, the response at time ti, V(ti)=Vi, can be 
expressed with the response at time ti-1,V(ti-1)=Vi-1, by the 
following:  
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where =e tΔHT  is the exponential matrix. According to the 
precise algorithm in Reference [9], T can be rewritten as 
 

/ mH t H t mT e eΔ Δ⎡ ⎤= = ⎣ ⎦                           (38) 
 
 By setting τ=Δt/m when m=2N is large and Δτ is small, a 
Taylor series expansion is provided by  
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 When N=20, the Taylor series truncation error is 
noticeably smaller than the computer rounding error. In 
actuality, truncation would not result in a numerical error. 
Therefore, the computer’s exact solutions are provided 
because of the calculation precision of T(τ). 
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 Hence, if we analogize in turn, 
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In each operation, unit matrix [I] is not involved in the 
calculation because Tai is small and would become the 
mantissa when added to unit matrix [I]. As a result, it is 
ignored in the computer rounding operation. To avoid this 
situation, the following recursive solution is used. 
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In each integration step (ti-1,ti), the load is assumed to 

change linearly. Non-stationary pseudo force F(ω,t) can be 
discretized as stochastic variables F0，F1，F2，···，Fk at 
time t0，t1，t2，…，tk, respectively, by the following: 
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where r0, r1 is a time-invariant vector. Inserting Eq. (43) into Eq. (37) results in 
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where H-1 can be derived according to Eq. (35). 
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Eq. (44) is further written as follows: 
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where H-2=H-1·H-1. Eq. (66) can be simplified as 
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At each fixed frequency point, V0=0. Through Eq. (48), 
the response at each moment can be expressed as 
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where 
 
3 2 1S TS S= +                                      (50) 

 
 Ai,0，Ai,1，···，Ai,I represent the coefficients in front of 
F0，F1，···，Fi, respectively，and the i  in Ai,i stands for 
time ti. The second i  denotes the ith load discrete point 
location. Eq. (44) can be expressed as: 
 

,0 0 ,1 1 , 1 1 ,··· ( 1,2, , )i i i i i ii i iV A F F A F A FA i k− −= + + + + = L        (51) 

 
where Ai,0, Ai,1, ···, Ai,I is connected to the structure itself but 
not to the external load, reflecting the inherent properties of 
the structure under external load excitations [15]. The 
calculation process of Ai,i is recursive, and the coefficient of 
Vi-1( Ai-1,0, Ai-1,1, ···, Ai-1,i-1) is used to deduce the next 
coefficient, which is 
 

( )
,0 1,0 ,1 1,1

1,0 1
11 2 2,2 11
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21 3 , 1, 1

2 ,3
i i i i
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 (52) 

 
The result of substituting Eq. (52) into Eq. (51) written 

in matrix form is [16–17] 
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(53) 

 According to Eq. (51), all the other elements in the 
coefficient matrix are repeated in the first and second 
columns. In other words, as long as the elements in the first 
and second columns are obtained, the entire coefficient 
matrix can be determined. Setting F0=1 and Fk=0(k>0) 
allows the first column elements of the coefficient matrix to 
be derived through transient analysis. Similarly, setting 
F0=0, F1=1, and Fk=1(k>2) allows the second column 
elements of the coefficient matrix to be obtained. 
 Under a non-stationary time history load, the response at 
any frequency point can be derived according to Eq. (53) 
once the coefficient matrix has been obtained. Under multi-
dimensional, multi-support, and non-stationary seismic 
excitation loads, when absolute displacement is used to solve 
directly, each incentive point of the structure needs to be 
excited in three directions. Then, the coefficient matrix A of 
the required structural response at key points can be 
obtained. After multiplying and superimposing the excitation 
time history in every direction and the corresponding 
coefficient matrix A, the structural response at fixed 
frequency points can be derived. The structural response 
over the entire frequency range can be determined by 
substituting the excitation process at all frequency points. 
Time history analyses under multi-dimensional and multi-
support frequency points could thus be avoided, and 
computation time would be reduced.  
 
 
4 Results Analysis and Discussion 
 
4.1 Example of the SDOF Structure 
This study is limited to the linear elastic range and the use of 
the finite element method to calculate a structural response. 
The superposition principle still applies. Consequently, 
verifying the correctness of the method requires an SDOF 
system. To verify the calculation accuracy of the proposed 
method under non-stationary pseudo excitation in ANSYS, 
we use analytical solutions and absolute displacement under 
the acceleration power spectrum Clough–Penzien to solve 
directly based on the SDOF system provided by Caughey. 

The mathematic statement is [18]  
 

   !!y + 2ξω0 +ω0
2 y = f x( ) = g x( )x t( )              (54) 

 

   y 0( ) = !y 0( ) = 0                              (55) 

 
where 
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                  (56) 

 
 According to literature [2], t1=7.1, t2=19.5, and c=0.16. 
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+
= ⋅ ⋅
⎡ ⎤ − +− +⎢ ⎥⎣ ⎦

 (57) 

 
where the spectrum intensity factor S* = 1(m2/s3), the field 
parameters ωg = 15.0 (rad/s), ξg=0.6, ωf=1.5(rad/s), ξf=0.6 
when m=1.0 (Kg), K=1.0(N/m), and ξ=0.05. The variance of 
the response is presented in Fig. 1. 
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Fig. 2. Comparison of computational efficiency 
 
 

As shown in Fig. 1, the result of the method proposed in 
this study (absolute displacement solution combined with a 
high-precision integration method) agrees with those of the 
theoretical calculation and the absolute displacement 
solution. In addition, the proposed method implements 
highly precise calculations. 

The selection of the SDOF structure for an efficient 
comparison is based on two considerations. The first is that 
the structural response under non-stationary seismic 
excitation involves a large amount of calculation difficulty 
and is likely impractical. Second, the general structure can 
be converted to an SDOF system through a mode-
superposition method over the elastic range. Moreover, the 
SDOF system is the foundation of the MDOF system. 
Setting the SDOF system as an example through the new 
method is highly efficient. The traditional stochastic 
vibration method, pseudo excitation method, pseudo 
excitation and high-precision integration method, and I-
HPIM methods are selected in this study to compare 
computer efficiency. Additionally, the Duhamel integral 
method was adopted for a more convenient comparison. The 
integral step is 0.01 (s), the seismic calculation time is 30 
(s), and the time step is 0.05 (s). The other parameters are 
consistent with those for the SDOF system in Section 4.1, 
and the computational results are as shown in Fig. 2. 

Table 1 shows the calculation time with the SDOF 
system at any frequency point (including the post-processing 
time). As shown in Fig. 2 and Table 1, the method proposed 
in this study has the highest efficiency among all four 
methods; this preponderance becomes increasingly apparent 
as the computing frequency points increase. SVM (the 

traditional stochastic vibration method) is difficult to apply 
in practical engineering because of its long calculation time. 
The efficiency of PEM (the pseudo-excitation method) is 3 
times as high as that of SVM because it avoids the multiple 
integrals. For a large and complex structure, seismic analysis 
still needs improvement. The efficiency of HPIM (pseudo-
excitation method and high-precision integration method) 
improves by 115 times because of the introduced high-
precision integration. The efficiency of I-HPIM, which is 
combined with the absolute displacement direct solution (the 
method proposed in this study), improves 120 times on the 
basis of SVM. As a result, the proposed method is 
convenient for multi-dimensional and multi-support seismic 
excitation simulations. 

 
Table 1. Comparison of the calculation time of the four 
methods 
Frequency SVM PEM HPIM I-HPIM 
0.5 45.72 17.83 0.39 0.37 
1 84.25 30.77 0.48 0.42 
2 163.51 60.06 0.81 0.55 
4 322.02 115.81 1.54 0.85 
8 639.49 224.73 2.91 1.39 
16 1315.80 449.39 5.73 2.50 
32 2671.80 909.52 11.50 4.68 
Note: The frequency unit is rad/s, and the time unit is s. SVM: 
traditional stochastic vibration method, PEM:  pseudo excitation 
method, HPIM: pseudo excitation method and high-precision 
integration method, I-HPIM: the method proposed in this study. 
 
4.2 Finite Element Mode and Parameter Description 
A long-span high-pier continuous rigid frame bridge is 
employed in this study. The 3D FE model of the bridge is 
presented in Fig. 3. Fixed boundary conditions are applied to 
the bottoms of Pier #1 to Pier #5, and the vertical (Z), 
transverse (Y), and rotational DoFs with respect to Z (Rotz) 
and X (Rotx) directions are fixed in the north and south 
abutments of the railway bridge. All the DoFs of Pier #1, 
Pier #2, and Pier #4 (the DoFs in the connection area of the 
piers and main girder) are coupled with the main girder’s 
corresponding DoFs, whereas the longitudinal DoFs (X) of 
Pier #3, Pier #5, and the main girder in their connection parts 
are released. 
 

1 2

3
4

5

 
Fig. 3. 3D FE model 
 
 

The Clough–Penzien power spectrum is used. Parametric 
spectral intensity factor S*=0.00177(m2/s3), field parameters 
ωg=15.0(rad/s), ξg=0.6, ωf=1.5(rad/s), and ξf=0.6. The 
modulating functions and parameters in Eq. (56) are 
adopted. 

The purpose of this study is to introduce calculation 
theory and the correctness of quick calculations and highly 
efficient verifications. However, the practical application of 
these calculations will be discussed in subsequent papers. 
The relative displacement response time-varying variance of 
the expansion joints in the top two main girders of pier #2 is 
calculated with the four methods. The results are shown in 
Figs. 4 to 6. A solid foundation is established to design wide 
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expansion joints for high-pier bridges and thus prevent 
beams from colliding with each other under earthquake 
stress.. 
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 Fig. 4. Relative displacement of expansion joints in hard soil conditions 
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conditions 
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As shown in Figs. 4 to 6, the relative displacement 
responses of the four methods are in good agreement. When 
compared with the traditional stochastic vibration method, 
the difference does not exceed 5%. The methods proposed in 
this study are conservative because the damping coefficient 
is proportional to the absolute displacement, and the 
traditional damping coefficient is proportional to the relative 
displacement. Among the three soil types (hard, medium, 
and soft), the soft soil site has the greatest relative 
displacement response. The influence of a soft soil site on 
the structural response should be considered with expansion 
joint width design largely because high piers lead to low 
vibration frequency, which is close to the predominant 
frequency. 
 
 
5. Conclusions 
 
To improve the computational efficiency of a complex 
structural dynamic response under non-stationary seismic 
excitation, a fast simulation method was developed and 
implemented with ANSYS software. The following 
conclusions were obtained. 
(1) The proposed method fully takes considers real ground 
motions, so calculating the dynamic response of a large-span 
complex structure in consideration of the spatial effects of 
ground motion, non-stationarity, and multi-dimension is 
easy. Additionally, efficient calculation and analysis 
methods are provided for the seismic design code.  
(2) The improved high-precision integration method allows 
for the time history analysis of N (number of discrete 
frequency points) reduced to a time history analysis of 
2×3×m (m is the number of supporting nodes). As a result, 
the computational efficiency is improved rapidly.  
(3) The proposed method is based on the general finite 
element software ANSYS so that engineers can easily 
master it. The method thus contributes to the application and 
promotion of seismic analysis in practical engineering. 
The proposed theoretical approach was implemented and 
verified in the general finite element platform to make it 
readily applied in stochastic seismic analysis of several 
complex and significant structures.  
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