
Journal of Engineering Science and Technology Review 9 (5) (2016) 88 - 92	

	
Research Article

A Cartesian Genetic Programming Approach for evolving Optimal Digital Circuits

 S. A. Kazarlis*, J. Kalomiros, and V. Kalaitzis

Department of Informatics Engineering, Technological Educational Institute of Central Macedonia, Serres, 62124, Greece

Received 30 June 2015; Accepted 25 January 2016

Abstract

In this work, a Cartesian Genetic Programming (CGP) method is presented for the evolutionary synthesis of optimal
digital circuits. In this evolutionary method, circuits are represented as directed graphs in the form of an MxN Cartesian
grid. Evolved circuits are qualified using a fast custom emulator of digital circuits that was built to serve as a fitness
function for the algorithm. The performance of the CGP algorithm is tested on six different digital circuits, used as
benchmarks. The evolution results prove the ability of the CGP scheme to find optimal solutions with significant
probabilities. Moreover, the CGP algorithm is able to produce unconventional solutions for known circuits.

Keywords: Cartesian Genetic Programming, Digital Circuits, Evolvable Hardware, Digital Circuit Emulation.
__

1. Introduction

The field of Evolutionary Algorithms (EAs) [1], [2], is quite
young and describes a large set of stochastic optimization
methods inspired from biological evolution and natural
systems. Numerous times in the literature, EAs have proved
their merits as powerful optimizers of difficult real world
problems. Genetic Programming (GP) [3], [4], is such a
method that was primarily used for evolving software that
was encoded using a special tree encoding scheme. But soon
researchers extended GP’s applications by applying them to
other real world problems with tree-encoded solutions, like
the optimal design of analog and digital circuits [5], [6]. The
evolution of circuits has moved ahead by evaluating
potential solutions on FPGA-like platforms and thus another
EA was born called Evolvable Hardware (EH) [7], [8].
 A variation of GP, named Cartesian Genetic
Programming (CGP), was proposed by Miller and Thomson
[9]. In CGP, circuits are not encoded as trees, but as directed
graphs that usually have the form of MxN Cartesian grids. In
cases where such grids are used for encoding digital circuits
[17], [18], the grids contain MxN nodes, each representing a
digital gate. Moreover, these nodes can interconnect with
each other, forming arbitrary circuits of combinatorial or
sequential nature.
 For the application of any EA on any optimisation
problem one has to build a Fitness Function [10], in order to
be able to evaluate every evolved solution. This Fitness
Function can be seen as a mapping function between the set
of possible solutions and the set of real numbers, assigning a
quality value to each possible solution. In our work the
Fitness Function should be able to qualify proposed digital
circuits. Thus a special Digital Circuit Emulator [11] was
built in order to cover this need for the CGP algorithm. The
Digital Circuit Emulator was built as a function that receives
the circuit under evaluation as its input in a string-encoded
form. It is capable of simulating both combinatorial and

sequential circuits of up to 500 gates, and can be extended
even more by altering its input encoding.
 The proposed CGP implementation that uses the Digital
Circuit Simulator is applied on six (6) digital circuit
synthesis problems. Each problem corresponds to a well-
known digital circuit whose truth table is given as a
specification to the CGP algorithm. The required task is to
find an optimal digital circuit which a) exactly matches the
specified truth table, and b) minimizes the necessary number
of gates. The digital circuit synthesis problem defined above
can be characterized as a Multi-Objective optimization
problem [12]. Usually Multi-Objective optimisation
problems need the construction of a consolidated fitness
function that will combine all individual objective functions
into one.
 In order to extract useful information about the
performance of the CGP scheme, a large number of
simulation runs have been scheduled, for different sizes of
the grid structure. The results of this effort are presented and
discussed in this article. Moreover, the CGP scheme has
revealed another merit: the ability to evolve unconventional
designs of a particularly small number of gates. These
solutions have to be further examined and studied against the
literature.
 The organization of the paper is as follows: in Section 2,
the Cartesian Genetic Programming implementation is
presented. The digital circuit simulator is described in
Section 3. In Section 4, the test set used for testing the CGP
scheme is described. The simulation results and conclusions
are presented in Section 5.

2. The Cartesian Genetic Programming Implementation

2.1. The Cartesian Grid Structure
The Cartesian Genetic Programming (CGP) approach used
in this work represents a possible circuit as an MxN grid.
Each node on the grid represents a digital gate that is defined
by the evolutionary algorithms from a set of available
Boolean functions. Also, the evolutionary algorithm defines

Jestr
	
JOURNAL	OF	
Engineering	Science	and	
Technology	Review	
	

	www.jestr.org	

 * E-mail address: kazarlis@teicm.gr
ISSN: 1791-2377 © 2016 Eastern Macedonia and Thrace Institute of Technology. All rights reserved.

S. Kazarlis, J. Kalomiros, and V. Kalaitzis / Journal of Engineering Science and Technology Review 9 (5) (2016) 88 - 92
	

	

89

the interconnections between the grid nodes, in order to form
a potential circuit. In this work, only forward connections
are allowed between gates of adjacent columns. However,
circuit inputs can be connected not only to the gates of the
first column but to any gate in the grid. Moreover, the
outputs of the circuit can be drawn not only from the gates
of the last column, but from any gate. A grid of this form
with a 3x3 dimension can be seen in Fig. 1.
 Each gate in the grid can be chosen among the following
values: 0. Non-existent, 1. AND, 2. OR, 3. NOT, 4. NAND,
5. NOR, 6, XOR, 7, XNOR. The “non-existent” value
allows a circuit to have less gates than MxN. The
minimization of the number of gates is also an optimization
goal.

Fig. 1. A 3x3 Cartesian Grid for digital circuit evolution

 All gates are considered as two-input, one-output gates
except for the NOT gate that has a single input. A gate’s
input can connect: a) to a circuit’s input, b) to the output of a
gate of the previous column, and c) to logic 0 or 1.

2.2. The genetic representation of solutions
Evolutionary Algorithms usually operate on solution spaces
formed by encoding solutions in symbol strings of a usually
binary alphabet. Thus, the following representation scheme
has been adopted: each grid node corresponds to a binary
chromosome that encodes the gate type and the
interconnections of this gate. Each chromosome comprises 4
subparts:

a) gate-type subpart: a 3-bit subpart enough to encode all 8
different node configurations.
b) gate-input-1 subpart: a subpart encoding the connection of
the first input of the gate. The number of bits needed for this
subpart is:

 ceil(log2 (NoOfGridRows+NoOfCircuitInputs+2)) (1)

where ceil() is a function that returns the smallest integer
greater or equal than its argument and the “+2” term is for
including the cases of logical 0 and 1.
c) gate-iput-2 subpart: a subpart encoding the connection of
the second input of the gate, similar to the previous one.
d) gate-output subpart: this subpart encodes whether the gate
produces a circuit output or not and needs a number of bits
equal to:

 ceil (log2 (NoOfOutputs+1)) (2)

 For example, for a circuit with 3 inputs and 2 outputs
(like the full-adder) which is optimised using a 4x4 grid, 13
bits are needed for each gate (3 gate-type bits, 4 gate-input-1

bits, 4 gate-input-2 bits, and 2 gate-output bits) with a total
of 117 bits for the whole genotype.
 The genotype encoding scheme can be seen in Fig. 2.

Fig. 2. The binary representation for circuit encoding

2.3. The Evolutionary Algorithm
In this work, a Genetic Algorithm (GA) [13], [14] was used
for evolving optimal digital circuits. The GA featured a
population of 500 genotypes randomly initialized at the
beginning, roulette wheel parent selection [13], uniform
crossover [15], binary mutation with a low per-bit
probability, replacement of all parents with offspring at each
generation, the elitism mechanism [13], and a generation
limit of 10,000 generations. Moreover, an automatic scheme
for adaptive operator probabilities is used, described in [16].

3. The Digital Circuit Simulator

3.1. The Simulator
In order to evaluate each genetically produced solution, a
fitness function must be built to provide a metric for the
quality of the solution. In this work, we have used a fast
digital circuit simulator, which is described in [11]. Each
circuit under evaluation must be encoded in a string form
and passed to the simulator as a parameter. Also the
complete array of all input vectors to be tested is also
passed.
 The simulator works as follows: it first analyses and
parses the input string describing the circuit and creates an
internal array structure with the gates’ parameters and circuit
topology. Then it presents all input vectors to the circuit, one
by one, and calculates the circuit’s response for each input.
The simulation is performed using a second internal array
that keeps the state of binary signals for each gate and
interconnection of the circuit.
 The digital circuit simulator uses a discrete-time
simulation technique inspired by the principles of the
propagation of digital signals through the logic gates, and is
described in [11]. The propagation of digital signals through
gates is simulated step by step, using discrete time quantities
that are effectively implemented as loop iterations. These
time steps play the role of consequent periods of an informal
internal state clock. The period of this ideal clock coincides
with the delay of a single gate, whilst the signal propagation
through the interconnections is considered to be
instantaneous.
 When all input vectors are presented to the circuit and all
corresponding output vectors have been calculated and
registered, the simulator creates a consolidated array of
output vectors and returns this array to the Genetic
Algorithm.

Chrom.1	 Chrom.2 Chrom.3 Chrom.N …	

	0	0	1	 1 0 1 0 0 1 1 1 1 0

Chromosome	structure	

Consolidated Genotype

Gate type Gate input 1 Gate input 2 Gate output

Gate
 1,1

Gate
 2,1

Gate
 3,1

Gate
 1,2

Gate
 2,2

Gate
 3,2

Gate
 1,3

Gate
 2,3

Gate
 3,3

Input1	

Input2

Output1

Output2

S. Kazarlis, J. Kalomiros, and V. Kalaitzis / Journal of Engineering Science and Technology Review 9 (5) (2016) 88 - 92
	

	

90

3.2. The GA Fitness Function
When GA receives the complete output array from the
simulator, it compares this array to the array of desired
outputs for the specific circuit and calculates the total
hamming distance for all bits. The minimization of this
hamming distance is the primary objective of the GA.
However, another optimization goal exists, and that is to
minimize the number of gates of the circuit. This definition
makes the problem a multi-objective optimization problem
[12]. For handling these two optimization objectives, usually
a consolidated objective function is formed as a weighted
sum of the individual objective values.
 In this work we used the following consolidated
function:

If (F1(S) > 0) Fitness(S) = 100 x F1(S)
Else Fitness(S) = 100 x F1(S) + 1 x F2(S) (3)

where:

F1(S) = HammingDistance(Os , D) (4)

F2(S) = NoOfGates(S) (5)

where S is a solution (circuit) under evaluation, F1(S) and
F2(S) are the two individual optimization functions, Os is
the output array for solution S, and D is the array of desired
outputs.
 This makes the GA to work in two stages: in the first
stage the GA tries to find a digital circuit that will satisfy the
complete truth table, ignoring the number of gates needed
for the circuit, and in the second stage, when it has already
satisfied the truth table, it tries to minimize the circuit size.
This fitness function has proved to give much better
optimization results over all test cases.

4. The Simulation Test Set

For testing the CGP scheme proposed in this work, a set of
six (6) elementary and well known digital circuits of
increasing complexity and of increasing number of gates has
been employed. The test set is shown in Table 1.

Table 1. Parameters of the digital circuits included in the
test set

Circuit
No of

2-input
gates

No of
inputs

No of
input

combina
tions

No of
output

s

No of
output

bits

Half Adder 2 2 4 2 8

Decoder 2 to 4 6 2 4 4 16

Full Adder 5 3 8 2 16

2-bit Multiplier 8 4 16 4 64

Decoder 3 to 8 19 3 8 8 64

2-bit
Comparator 15 4 16 3 48

 In Table 1, the “No of Output Bits” column contains the
product of the “No of Input Combinations” and the “No of
Outputs”, thus expressing the size of the output vector that
has to match the desired one from the circuit’s truth table.

The typical synthesis of such circuits as well as their
complete truth tables is well described in the literature [19].
For example, the picture of a typical “2-bit Comparator”
circuit is shown in Fig. 3.

A1

B1

A0

B0

A<B

A>B

A=B

Fig. 3. The 2-bit comparator used in the test set

5. Simulation Results

Simulation results were performed using the same set of GA
parameters for all test cases. The complete set of GA
parameters is shown in Table 2. For each circuit case, a
number of different simulation experiments have been
conducted for different grid sizes. For the simpler circuits
four different grid sizes have been considered, while for the
larger ones three grid sizes have been considered.
 Since Evolutionary Algorithms are stochastic algorithms,
and in order to avoid statistical errors, ten (10) runs have
been made for each circuit case and each grid size. Thus, for
each test case several statistical figures have been calculated
in order to judge the performance of the proposed
implementation.

Table 2. Parameters of the Genetic Algorithm
GA Parameter Value GA Parameter Value

Population 500 Crossover
Probability 0.4 to 0.9

Selection Roulette
Wheel

Mutation
Probability 0.001 to 0.1

Crossover Uniform Elitism Yes

Mutation Binary
Mutation

Population
Replacement

Whole
Population

Operator
Probabilities

Automatically
adapted Termination 10,000

generations

 The simulation results are shown in Table 3. A test case
was considered successful if it could find a solution that
completely satisfied the circuit’s truth table. This was
achieved when the hamming distance between the output
vector of the genetically produced solution and the desired
one was equal to zero (0).
 The results were obtained on an Intel Core-i7
workstation with 8GB RAM, running Windows 8.1, and the
software was developed using native C++.
 As can be seen from Table 3, the CGP scheme manages
to find optimal solutions that completely justify the desired
truth table, in all test cases.

S. Kazarlis, J. Kalomiros, and V. Kalaitzis / Journal of Engineering Science and Technology Review 9 (5) (2016) 88 - 92
	

	

91

Table 3. Simulation Results

Circuit CGP
Grid

Su
cc

es
s R

at
e

A
vg

 g
at

es
 o

n
su

cc
es

s

M
in

 g
at

es
 o

n
su

cc
es

s

M
ax

 g
at

es

on
 su

cc
es

s

A
vg

 g
en

er
.

to
 fi

nd

op
tim

um
 Avg

exec.
time per

task
(minutes)

Half Adder 2x2	 100%	 2	 2	 2	 <	50	 2,0	

Half Adder 3x3	 100%	 2	 2	 2	 <	50	 2,9	

Half Adder 4x4	 100%	 2,3	 2	 4	 275	 3,8	

Half Adder 5x5	 100%	 2,6	 2	 3	 1150	 5,0	
Decoder 2 to
4 3x3	 100%	 4,6	 4	 5	 345	 3,6	

Decoder 2 to
4 4x4	 100%	 4,8	 4	 6	 2850	 4,8	

Decoder 2 to
4 5x5	 100%	 5,5	 4	 7	 1815	 6,0	

Decoder 2 to
4 6x6	 100%	 6,1	 4	 9	 3720	 8,9	

Full Adder 3x3	 80%	 5,4	 5	 7	 1705	 4,7	

Full Adder 4x4	 90%	 5,6	 5	 6	 880	 6,5	

Full Adder 5x5	 100%	 7	 5	 10	 1660	 8,8	

Full Adder 6x6	 100%	 7,3	 6	 9	 2120	 17,2	

2bit multiplier 4x4	 30%	 8,7	 8	 9	 4750	 18,6	

2bit multiplier 5x5	 30%	 11	 9	 13	 4950	 44,4	

2bit multiplier 6x6	 50%	 10,6	 8	 12	 5920	 114,6	
Decoder 3 to
8 5x5	 20%	 17	 17	 17	 1900	 25,5	

Decoder 3 to
8 6x6	 10%	 20	 20	 20	 7250	 90,8	

Decoder 3 to
8 7x7	 40%	 22,5	 18	 26	 6350	 155,2	

2bit
comparator 5x5	 40%	 12	 11	 13	 4875	 40,6	

2bit
comparator 6x6	 60%	 12,2	 9	 17	 7175	 113,1	

2bit
comparator 7x7	 20%	 22	 22	 22	 5925	 286,9	

 For the problems of the Half Adder and the Decoder 2-
to-4 the CGP scheme finds the optimum consistently with a
100% success rate, for all grid sizes. However, for the rest of
the cases a general decrease of the success rate is observed,
as the circuits become more complex and with a larger
number of gates.
 Also, it is obvious from the results in Table 3, that for
each specific test case the grid size on which the circuit is
evolved plays a significant role in the overall performance.
In the easier cases of the Half Adder and the Decoder 2-to-4,
smaller grids lead to smaller search spaces that make the
search process easier and faster. But in more complex
circuits, the small grids seem to make the search more
difficult.
 For example, in the case of the Full Adder, using a 4x4
grid seems a better idea than using a 3x3 grid, as the success
rate, the solution quality and the speed are better. The 4x4
grid leads to fast discovery of optimal solutions (880
generations needed on average) but there is a slight

possibility of missing the optimum (90% success rate).
However, when using a 5x5 grid the CGP consistency seems
to increase (100% success rate) but with a sacrifice in
convergence speed, possibly due to the larger search space.
 Similar conclusions can be drawn for the other circuit
cases as well. For the 2-bit Multiplier, the 6x6 grid gives
better success rate but lower convergence speed. For the
Decoder 3-to-8 the best grid choice is 7x7. And for the 2-bit
Comparator the 6x6 grid outperforms the other two.
 It is also worth mentioning that in most cases the CGP
algorithm has produced many unconventional solutions with
the same minimal number of gates as the conventional ones,
and in some cases even less. The most profound example is
that of the 2-bit Comparator. Typical circuit designs as the
one shown in Fig. 3 use a total of 15 two-input gates. By
searching the web, designs with as few as 11 gates can be
found. The CGP scheme has produced a solution that
completely satisfies the desired truth table and uses only 9
two-input gates, as can be seen in the case of the 6x6 grid.
The schematic diagram of this genetically produced 2-bit
comparator circuit is depicted in Fig. 4. Moreover, it can be
also noted that in the 5x5 grid case, all solutions use less
gates than the 15 of the typical design, as the best one uses
only 11 and the worst uses 13.

B0

B1

A1

A0

AEQB

AGTB

ALTB

Fig. 4. The 2-bit comparator implementation with 9 gates proposed by
the CGP scheme.

 A similar case is that of the Decoder 3-to-8 where typical
designs use a number of 19 two-input gates, while the CGP
scheme has produced solutions with only 17 gates.
 These unconventional solutions produced by the CGP
scheme with less than typical number of gates, will be
further studied in our future work. The ability of the CGP
scheme to discover unconventional solutions with the same
or even lower number of gates than the typical designs, is
justifying its characterization as an “invention machine”.

This paper was presented at Pan-Hellenic Conference on
Electronics and Telecommunications - PACET, that took
place May 8-9 2015, at Ioannina Greece.

Acknowledgement
The authors wish to acknowledge financial support provided
by the Research Committee of the Technological
Educational Institute of Central Macedonia, Greece, under
grant 80/9/20-5-2015.

References
	

1. T. Back, D. Fogel, and Z. Michalewicz, Handbook of
Evolutionary Computation, Oxford Univ. Press, 1997.

2. J. H. Holland, Adaptation in Natural and Artificial Systems, The
University of Michigan Press, Ann Arbor, 1975.

S. Kazarlis, J. Kalomiros, and V. Kalaitzis / Journal of Engineering Science and Technology Review 9 (5) (2016) 88 - 92
	

	

92

3. J.R. Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, 1992.

4. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone,
Genetic programming: an introduction, (Vol. 1), San Francisco:
Morgan Kaufmann, 1998.

5. J. R. Koza, F. H. Bennett III, D. Andre, M. A. Keane, and F.
Dunlap, “Automated synthesis of analog electrical circuits by
means of genetic programming”, IEEE Transactions on
Evolutionary Computation, 1.2, pp. 109-128, 1997.

6. J.F. Miller, D. Job, V.K. Vassilev, “Principles in the
Evolutionary Design of Digital Circuits – Part I”, Genetic
Programming and Evolvable Machines 1(1), pp. 8-35, 2000,
Kluwer Academic Publishers.

7. T. Higuchi, et al. “Evolvable hardware with genetic learning.”
IEEE International Symposium on Circuits and Systems, 1996,
ISCAS'96. Connecting the World., Vol. 4. IEEE, 1996.

8. T. Higuchi, and X. Yao, Evolvable hardware. Vol. 11. Springer
Science & Business Media, 2006.

9. J.F. Miller, and P. Thomson, “Cartesian Genetic Programming,”
in: R. Poli, W. Banzhaf, W.B. Langdon, J. Miller, P. Nordin,
T.C. Fogarty, (eds.), EuroGP 2000, LNCS, vol. 1802, pp. 121–
132. Springer, Heidelberg, 2000.

10. S. Kazarlis and V. Petridis, “Varying Fitness Functions in
Genetic Algorithms: Studying the Rate of Increase of the
Dynamic Penalty Terms,” Proceedings of the 5th International
Conference on Parallel Problem Solving from Nature (PPSN-V),
Amsterdam, pp. 211-220, 27-30 September 1998.

11. S. Kazarlis, J. Kalomiros, P. Mastorocostas, V. Petridis, A.
Balouktsis, V. Kalaitzis, A. Valais, “A Method for Simulating
Digital Circuits for Evolutionary Optimization,” Proceedings of
the 10th Annual International Joint Conferences on Computer,
Information, and Systems Sciences, and Engineering (CISSE
2014), December 12-14, 2014

12. K. Deb, Multi-objective optimization using evolutionary
algorithms. Vol. 16. John Wiley & Sons, 2001.

13. L. Davis, ed. Handbook of genetic algorithms. Vol. 115. New
York: Van Nostrand Reinhold, 1991.

14. D. E. Golberg, “Genetic algorithms in search, optimization, and
machine learning”, Addion Wesley, 1989.

15. G. Sywerda, “Uniform crossover in genetic algorithms”,
Proceedings of the third international conference on Genetic
algorithms, J. D. Schaffer, ed., Morgan Kaufmann Publishers
Inc., pp. 2-9, 1989.

16. V. Petridis and S. Kazarlis, “Varying Quality Function in
Genetic Algorithms and the Cutting Problem,” Proceedings of
the First IEEE Conference on Evolutionary Computation, IEEE
Service Center, Vol. 1, pp. 166-169, 1994.

17. J. F. Miller, Cartesian genetic programming, Springer Berlin
Heidelberg, 2011.

18. J. F. Miller, and S. L. Smith, “Redundancy and computational
efficiency in Cartesian genetic programming”, IEEE
Transactions on Evolutionary Computation, 10.2, pp. 167-174,
2006.

19. M. Morris Mano, M. D. Ciletti, Digital Design, 5th Edition,
Prentice Hall, 2013.

