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Abstract 
 
The rising complexity of embedded digital applications and the growing importance of time-to-market require EDA 
tools to automate the design and implementation process of various IP blocks. One very important class of EDA tools is 
the generation of hardware descriptions for popular IP blocks. The multiplication by an integer constant is a special type 
of problem that is required in a plethora of situations. Here, we present an online tool that can generate HDL descriptions 
constant multiplication intellectual property blocks, using only elementary operations, like shifting and addition. Our 
synthesized circuits on Xilinx Virtex 6 FPGA XC6VLX760, operate up to 589 Mhz. 

 
Keywords: Constant multiplication , EDA tool, HDL, IP 
__________________________________________________________________________________________ 

 
1. Introduction 
 
More and more components are implemented as IP blocks 
on the same silicon, raising the number of transistors on the 
same die to billions. The integration of all these IP blocks is 
a difficult task that can intimidate even the best design 
teams, especially when there is lack of IP block support. 
Furthermore, some researchers and organizations are 
investigating and investing on the implementation of some 
algorithms in FPGA accelerators [1], a daunting task that 
requires many EDA tools to support and alleviate the 
hardware complexities. 
 Multiplication by an integer constant is a fundamental 
operation in algorithms that require some kind of matrix 
calculations, like Karatsuba algorithm on large integer 
multiplication, or the fast approximate computation of 
consecutive values of a polynomial. Furthermore, in case 
that a design space exploration is required, many circuits 
descriptions are needed and thus the efficiency of the team 
plummets. This places a lot of pressure on these teams to 
develop quickly with the traditional methods of edit, 
compile, simulate and verify. If only a tool could quickly 
generate parametrized, verified and accurate HDL models 
for such circuits, the team could reap considerable benefits 
not only in development time and productivity, but also in 
code maintainability and readability. 
 We noticed this shortcoming and decided to create a tool  
that will be able to create custom constant multiplication IP 
blocks, with or without pipeline to be used for custom 
architectures. Thus, our major contribution of our work is 
that we present a public web accessible tool that can create 
very fast syntactically correct register-transfer-level VHDL 
description of a constant IP block multiplications1. 
 The rest of this paper is structured as follows. In the next 
section (Section 2) we present the importance of constant 
multiplication, while in Section 3 we discuss some related 

																																																													
1 http://arch.icte.uowm.gr/hdl/constant_multiplier.php 

work. We present our algorithm in Section 4 and our tool in 
Section 5. The output of our tool is discussed in Section 6. 
Finally, we present some experimental results in Section 7. 
 
 
2. Establishment of the multiplication function 
 
Constant multiplication is a function much more 
complicated than addition. In the early days of 
microprocessors it was established that it was necessary to 
create a specialized circuit that will perform this task [2]. 
Contemporary digital circuits that perform digital signal 
processing (DSP), error correction codes (ECC), fast fourier 
transformations (FFT) all implement this function [3], [6]. 
Specifically, FFT processing is one of the most critical 
components in the orthogonal frequency division 
multiplexing (OFDM) [4]. OFDM itself is used in 
technologies including WiMax, WAN and LTE just to 
mention a few. 
 Perhaps the most important inception in improving the 
speed of multiplication was made by Wallace [5], who used 
full adders (FA) to add more than three numbers without 
carry propagation. This design became the base for modern 
multipliers. Many researches focus on improving upon this 
design [7], [8], [9], [10]. One of the improvements is the 
reduction of components used in the circuit, in this case full 
adders. This can achieved by reducing the number of '1' in 
the coefficients. Another great inception which improved the  
speed of the circuit was Booth's multiplication algorithm, 
which enabled the multiplication using shifting and allowed 
the use of negative numbers. Booth's technique led to many 
modifications of the original algorithm [11], [12] (and many 
more), which greatly improved the design of the multiplier 
in terms of speed and number of used components. 
 The term constant multiplication is used to denote the 
operation of consecutive additions of a variable x. The 
number of additions is determined by a constant number α. 
Our tool is able to produce such circuits in HDL, which can 
perform this operation in parallel. 
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3. Related work 
 
The process of generation of hardware description language 
(HDL) code from a higher level language is not new. We 
selected to present only a few tools that we found to be more 
relevant to ours. MyHDL [13] is a framework where the 
multipurpose programming language python is used for the 
construction of structures which are translated to VHDL. 
The SPARK project [14] is a similar tool which accepts 
specifications written in C and produces system on chip 
(SoC) designs in VHDL. The aforementioned systems work 
only offline and require their installation on the local 
machine. This process requires root privileges and 
knowledge on the Linux system administration and the 
existence of other tools and libraries such as the gcc 
compiler. Furthermore, this process may differ from one 
operating system to another. We believe that when it comes 
to circuit design and space exploration, a properly 
configured and ready to use EDA tool able to produce 
syntactically correct circuit designs is a key essence. 
 Generators are tools which given a set of parameters are 
able to produce HDL code. The given parameters determine 
the behavior and possibilities of the produced circuit. The 
code must be syntactically correct and synthesizable. The 
flopoco project [15] is a tool which falls under the category 
of such generators. Specifically it is a generator of arithmetic 
functions. This work is not online and must be downloaded 
and compiled. Also, their integer multiplication units utilize 
binary compressors specific for the DSP blocks of an FPGA, 
and they are not architectural neutral, like our 
implementation. 
 In the scientific electronics libraries we have also located 
a few references [18], [19] which mention a tool named 
DiaHDL. This tool is presented to be a web-based  EDA 
generator able to produce circuits and their testbenches in 
VHDL. According to [19], this tool can be run from any web 
browser with Java Runtime Environment and it is available 
to students at any place in the world. Despite our best 
efforts, we were unable to locate this tool and provide 
comparison results. 
 One last generator to mention is the SPIRAL tool [21] 
which is accessible online. This tool is able to handle only 
fractional numbers and does not provide a testbench to 
verify the multiplication results. Also our tool is able to 
calculate the number of components and transistors, two 
metrics which can be fairly useful when developing digital 
circuits. One more difference worth mentioning is the fact 
that our output descriptions are in VHDL while SPIRAL 
produced Verilog files. 

 
4. The multiplication algorithm 
 
From hardware point of view, it's always a waste of space 
and time to implement a generic constant multiplier [6]. 
Considering this we have realized our  multiplier design 
using the simple functions of shifting and addition. The 
algorithm can be better understood from an example shown 
in Eq. (1). 
	

  
f x( )= x ⋅6     (1)	

 
 Here we want to implement the function which given a 
number x will multiply it by 6. To do this, first we need to 
find the binary representation of the number 6, which is 110. 

The number of ‘1’s in the binary constant determines the 
number of coefficients which will have be added in the end. 
Each coefficient is a product of left shifts of the original 
number x. Here we have two ‘1’ and thus we have two 
coefficients. The number of left shifts of the two coefficients 
is determined by the position of each ‘1’ in the binary 
constant starting from the least significant bit (LSB). In our 
example the two ‘1’s are located in the positions 1 and 2. 
Considering this, the first coefficient is a single left shift of 
the number x and the second is the two times left shift of the 
number x. After the shifts we add the two coefficients to get 
the result. The realization of the example is summed in 
equation (2). 
	

  
f x( )= x <<1( )+ x << 2( )      (2) 

 
 Here we can clearly see the two coefficients which are 
essentially left shifts of the original number. 
 We present the generic algorithm used in Figure 1.  
 

Fig. 1. Constant multiplication algorithm 
 
This algorithm can be scaled to any constant and variable 
number because we can easily compute the number of ‘1’s 
and their positions in the constant. 

 
 

5. Our online EDA tool 
 
Having faced the task of circuit design and space exploration 
ourselves, we have created a tool2, which automatically 
generates syntactically correct VHDL code. Knowing how 
time consuming this task might be, we decided to share our 
work with the scientific community. In the scope of this 
paper we have designed a new function able to generate 
VHDL code for constant multipliers. Unlike some 
previously mentioned works, our tool requires no 
installation, is online and publicly accessible  by anyone 
through a web browser. We utilize a number of technologies 
(PHP, Python, JSON) in order to deliver a syntactically 
correct and synthesizable VHDL description. Our tool is 
partitioned in two different departments, according to their 
function: the front end and the back end. These modules 
exchange information using the Javascript object notation 
(JSON) format [16]. 
 The front end is a web based form, where the user inputs 
parameters for the circuit. These parameters include the 
bitwidth of the variable, the constant number that will 
multiply the input, the option to pipeline the circuit or not, 
the number of random generated vectors to be created and 
the option for these vector to be unique (requiring more time 
to be created). Validation of the inputs occurs upon 
submission. 
 The back end provides the analysis and construction 
modules for the multipliers. It consists of three modules: (i) 
the Multiplier design module, which analyzes the user inputs 
																																																													
2 http://arch.icte.uowm.gr/hdl/ 
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and creates the specific design description in a special netlist 
format called α-HDL [20], (ii) the HDL Generator module, 
which takes as input this netlist format and creates signals, 
networks, assignments, and connections, resulting in the 
output description in VHDL, and (iii) the VHDL Test bench 
creator, which takes as input the constructed data structures 
of the previous module, and generates a full VHDL test 
bench, with handles for automatic design validation. 
 
A. Constant multiplier design module 
The multiplier design module creates a netlist in an internal 
format developed at our laboratory, which we call  α-HDL 
format, and operates in three stages: (a) locate all the ‘1’, (b) 
carry save addition, (c) ripple carry addition. This module 
can be used to create multiplication units of unsigned vector 
for arbitrary bit lengths. Due to the fact that we use the 
Python language, there is no restriction as to the bitwidth of 
the input vector to be multiplied. For example the Xilinx 
Core generator can only create multiplication units up to 
64×64 bits. Our tool has been used to create multiplication 
units with input vectors up to 512 bits. Such large vectors 
are usually found in cryptographic applications  [17]. This 
module operates in three stages. 
 The first stage computes the network of shift wires. The 
outcomes of the first stage are two: (a) the α-HDL structure 
and (b) a two dimensional array that specifies for every 
column the bits that should be taken into consideration. 

The second stage, accepts as input the array created in 
the previous stage and performs an optimized addition, using 
carry save adders. We have named this stage with the term 
reduction stage. This stage consists of many iterations. In 
every iteration i the reduction stage, scans all columns j 
starting from the least significant column, locates the 
columns that have more than one bit and places full adders 
(FA) or half adders (HA). The placement of adders is done 
in the best efficient way, in order to minimize the total 
number of FAs or HAs. This is achieved by delaying the 
placement of an FA or HA in favor of a better placement in a 
future iteration. 
 The third stage of the multiplier design module, is the 
final addition using a ripple carry adder. This stage, which is 
also optimized, places the best number and types of adders. 

 
B. HDL generator module 
The netlist created in the previous stage is given as input to 
the HDL Generator Module. This is a general purpose 
VHDL generator library that can be easily connected to 
many different generators. This module accepts as input a 
special and compact netlist format, which we name it 
abstracted HDL α-HDL. This netlist format, as well as the 
HDL Generator Module have already been presented in 
other works [20] and do not belong to the scope of this 
paper, and thus we will not describe them further. 

 
C. The VHDL Test bench creator 
We consider this module as of out most importance, as it 
produces testbenches which verify the generated VHDL 
designs. Our tool accepts as input the number of input cases 
to create, and generates the test bench in a VHDL file. To do 
this, first it creates an empty entity declaration, then it 
instantiates the top level component and creates signals for 
every input and output port. Furthermore, it creates a clock 
process and a function that is used to convert bits to integer. 
The next step is to create the requested number of input test 
cases. 

 For the number of input test cases, the module performs 
a loop in which a random number ranging from 0 to the 
maximum bitwidth is produced. This number is converted to 
binary and extended to the full bitwidth of the constant. 
Then the multiplication of the random input and the constant 
is precomputed and a VHDL assert clause is written on the 
testbench file to check the precomputed output, with the 
output that will be computed by the circuit. A ‘wait’ clause 
is used in order to keep the correct timing. The latency has 
been reported by the HDL generator, and is known in this 
tool. 
 All the test bench vectors are created randomly and 
automatically, according to the requested number of tests. 
As mentioned before, the user can also include the  
generation of unique testvectors. If this option is selected, 
the generated random numbers will all be unique and non 
repeating. This module also predicts the case where the 
requested number of testbenches supersedes the maximum 
random number able to be generated from the provided 
bitwidth. The outcome depends on the option for the unique 
testvectors. If it is selected, our function will generate the 
greatest possible number of unique tests for the given 
bitwidth. If not, the function will produce the requested 
number of tests and include repeating numbers. This process 
can be better understood from an example where the 
designer requests 10 tests to be generated for the bitwidth of 
2 and constant of 2. According to equation (1) the possible 
results for the maximum generatable number 4 ( 2

2 ) are 0, 
2, 4 and 8. If the option for the uniqueness is included, the 
outcome will be 4 tests (0, 2, 4, 8). Otherwise, there will be 
produced exactly 10 tests with repeating results (for example 
4, 2, 0, 2, 4, 4 and so on). Also, all the checks are done 
automatically, which means that the designer can load the 
test bench file into his HDL Synthesis and Simulator tool, 
and can execute it without any other intervention.  
 Although our designs are syntactically correct and we 
perform many random test to verify the correctness of the 
produced circuits results. With this module we give the 
designer the ability to create his own custom testbenches and 
verify his designs. 
  
 
6. Output 
 
 The output of the tool includes a library with the used 
components, the circuit for the multiplier and a summary 
report of that circuit. The first two are downloadable as 
VHDL files while the third is directly presented to the user. 
The produced VHDL descriptions are vendor neutral and 
can be synthesized in FPGA or ASIC circuits. The library 
can also be included in other designs and be repurposed 
accordingly. The summary presents information about the 
produced circuit including the number of components used, 
such as D flip-flops (FF), full adders (FA), half adders (HA) 
and more. Also, the tool is able to calculate the number of 
transistors used for the design. 
 
7. Experimental results 
 
In order to evaluate the efficiency of our web tool, we 
generated a large number of VHDL descriptions for different 
design parameters. Even though, both Xilinx and Altera 
provide a tool to create a parametrized multiplier for two 
input, the outcome is not a VHDL file and has a binary 
encrypted implementation netlist, which can be used only in 
a project targeting a specific FPGA board family. In contrast 
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with these two vendors, our tool creates generic VHDL code 
that is vendor neutral and can be freely synthesized either in 
FPGA or in ASIC, and creates single-vector multiplications. 
 Another remark is, that even though there are few offline 
tools to create multiplication cores for only two input 
vectors, all these cores do not use carry save adders to 
compute the product, but they use special structures that 
make use of fast DSP blocks found on modern FPGA 
boards. Thus, on the one hand we cannot provide 
measurements with other CSA multipliers, and on the other 
hand, comparing our CSA multiplier scheme, with other 
schemes of multiplication can be used only to extract some 
general conclusions and not to determine the efficiency of 
our circuits. Some of our designs are summarized in Table 1. 
  
Table 1. Automatically generated design results (non 
pipelined) 

#bits constant transistors FA HA	
16 46 1274 43 5	
32 57 2604 90 6	
64 78 5292 186 6	

128 92 10682 379 5	
256 121 28574 1017 7	

 
 
 In this table we can see some metrics that were 
calculated automatically by our tool and presented in the 
logfile. The respective pipelined versions of the designs are 
shown in Table 2 (DFF is the number of pipeline FF). 
 
Table 2. Automatically generated design results (pipelined) 
#bits constant transistors DFF stages	

16 46 7104 453 21	
32 57 22680 1608 36	
64 78 85032 6516 70	

128 92 314208 25037 133	
256 121 1230588 99484 261	

 Additionally, we synthesized the generated VHDL codes 
with Leonardo Spectrum, Xilinx Vivado 2013.2, Altera 

Quartus II 12.0. The synthesis results (Table 3) from Xilinx 
Vivado (Virtex6, speed grade -2) show that for small input 
bitwidths (16 bits), the occupied slices for the pipeline 
version (denoted with the letter ‘p’) are low. 
 
Table 3. Synthesis results for the Virtex 6 FPGA family 

#bits constant slices Freq(MHz) power(W)	
16 46 13 157.480 4.447	

16 (p) 46 70 589.970 4.447	
32 57 29 103.584 4.447	

32 (p) 57 335 589.970 3.441	
64 78 73 57.198 4.447	

64 (p) 78 631 538.213 4.447	
128 (p) 92 1387 538.213 4.473	
256 (p) 121 2989 538.213 3.422	
 
 
8. Conclusions 
 
Complicated system-on-chip designs require EDA tools to 
perform various tasks, one of which is IP block generation. 
One important IP block is constant multiplication. Our tool 
can generate valid and verified VHDL description of 
parametrized constant multiplication blocks, that can operate 
up to 589Mhz on a Xilinx Virtex 6. As our tool is web-
based, no local installation is required. Therefore, it ensures 
easy access to anyone in the world. There are many tools 
which can generate HDL code, but they are not online and 
some of them are commercial and expensive. Except the 
HDL description, our tools is able to supply a schematic and 
a random created testbench file to the user. The tool is public 
accessible from our webserver. 
 
 
This paper was presented at Pan-Hellenic Conference on 
Electronics and Telecommunications - PACET, that took 
place May 8-9 2015, at Ioannina Greece.  
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