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Abstract 
 

Strong reflection interference of rebar is the main barrier against ground-penetrating radar (GPR) detection of internal 
diseases in reinforced concrete structure. Deconvolution can strengthen GPR echo data through acquiring structural layer 
data. However, existing deconvolution echo signal processing algorithms cannot be applied to process the GPR echo data 
because of the hypothesis that the wavelet is in the minimum phase system, which is inconsistent with the attenuation of 
GPR wavelet during two-way travel time. To resolve this problem, a new subspace sparsity deconvolution algorithm was 
proposed in this paper to enhance the echo signal of rebar lower diseases. A wavelet signal attenuation model of layered 
structure was firstly established to analyse the influencing factors of disease echo signal attenuation under different 
conditions. On this basis, the sparsity deconvolution algorithm based on wavelet iteration was placed to enhance GPR 
echo signal quickly by using the constraint condition of subspace errors. The processing of GPR forward simulation data 
also reveals that the proposed algorithm can inhibit noises effectively and acquire layer information from the concrete 
structure when the local signal-to-noise ratio is larger than -19.7dB. The proposed algorithm is clearly superior to the 
existing automatic gain control algorithm with respect to the echo enhancement effect of GPR. Results show that this 
method overcomes the minimum phase restriction of deconvolution and it is of great significance to detect and recognize 
inter-layer diseases of high-speed railway ballastless tracks. 
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1. Introduction 
 
The approximate temperature expansion curve and the high 
binding strength between rebar and concrete increase the 
tensile and compressive strengths of concrete, making the 
reinforced concrete (RC) structure widely applicable in 
infrastructure construction. Taking the CRTS-II type 
ballastless track as an example, which consists of track plate, 
cement asphalt (CA) mortar and support layer, its health 
status directly affects the running safety of high-speed train. 
However, considering the long-term effect of load, different 
degrees and types of diseases will develop in RC structure, 
thus affecting its normal operation. Meanwhile, the 
concealing characteristic of diseases in the RC structure 
increases the detection difficulty. Therefore, a way to detect 
internal diseases of RC structure quickly and accurately is 
the key to infrastructure monitoring. 

Ground-penetrating radar (GPR) [1-2] is an important 
method to detect the internal diseases of RC structure for its 
fast, continuous and non-destructive characteristics. In 
theory, GPR detects underground target by taking advantage 
of the electromagnetic wave reflecting characteristic on 
surfaces of different dielectric parameters. As a good 
conductor, rebar is of strong reflection for electromagnetic 
wave, the reflectivity is 100%, the transmittance is 0%, and 

only a small part of energy continues to propagate 
downward by way of diffraction. This characteristic means 
that disease echo signal with rebar coverage is smaller than 
that without rebar coverage, which makes disease 
recognition more difficult. Therefore, enhancing the disease 
echo signal and eliminating the influences of rebar coverage 
is a big challenge to detect diseases of RC structure by GPR. 

On this basis, a subspace sparsity deconvolution 
algorithm is proposed to analyze and discuss the 
characteristics of disease echo signal covered by rebar. The 
proposed algorithm can enhance disease echo signal and 
eliminate the influences of strong reflection interference. 

 
 

2. State of the art 
 
Many existing commercial software (e.g., GSSI Radon and 
IDS GRE) enhance the GPR signal mainly through 
automatic gain control (AGC) methods, such as Standard 
AGC and Gaussian-tapered AGC [3-5]. The Standard AGC 
amplifies the signal in the time window proportionally 
according to the numerical relationship of echo intensity 
between signal in the time window and signal in the whole 
sampling interval. Gaussian-tapered AGC adjusts the center 
data of the Gaussian conical sliding window and achieves 
the AGC of GPR echo data according to changes of the root-
mean-square amplitude. These algorithms amplify target 
echo and noise signal by using the same proportionality 
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coefficient, thus failing to increase the signal-to-noise ratio 
(SNR). 
 Another algorithm assumes that the underground 
structure is a sparsity-layered structure, and the echo signal 
is the convolution of layered coefficient and launched 
wavelet. It gets the sparsity expression of the layered 
structure by calculating the deconvolution factor and 
enhances the interlayer reflection echo signal by executing a 
normalization process. Such algorithm is widely used in 
seismic signal processing because it increases the probe 
resolution and improves profile records. Common 
deconvolution algorithms include frequency-domain 
deconvolution [6], spiking deconvolution [7-8], predictive 
deconvolution [9-11], minimum entropy deconvolution 
(MED) [12-14], and homomorphic deconvolution [15]. 
Frequency-domain deconvolution acquires interlayer 
reflection-coefficient directly under a known wavelet in 
accordance to the relationship between the time-domain 
convolution and the frequency-domain product. Spiking 
deconvolution [7-8] directly acquires the deconvolution 
factor with respect to the least square and realizes interlayer 
echo positioning under the hypothesis of a known wavelet. 
However, the condition number of Toeplitz matrix is large 
owing to the dispersive property of the underground medium 
and sampling error, which causes a large error and a high 
false alarm rate in the process of calculating reflection 
coefficient. Predictive deconvolution [9-11] assumes that 
wavelet is the minimum phase system and noise is white. It 
gains the Toeplitz matrix by replacing wavelet 
autocorrelation with echo signal autocorrelation and thereby 
calculates the reflection coefficient. Considering that GPR 
echo signal is a typical non-minimum phase system, the 
predictive deconvolution is inapplicable to GPR signal 
deconvolution calculation. MED [12-14] assumes that the 
reflection coefficient is composed of sparse spike pulses, and 
the wavelet length is shorter than the minimum interval of 
reflection interfaces, which indicates that no echo 
overlapping exists in different reflection layers. However, 
GPR is mainly used to recognize superficial targets with 
small intervals and echo overlapping occurs frequently. 
Therefore, MED cannot apply to GPR signal deconvolution 
calculation. Homomorphic deconvolution [15] assumes that 
wavelets are relatively stable in the logarithmic statistical 
law of echo signal, where reflection coefficient is a random 
signal. The mean of random signal is close to zero given 
adequate samples. Under this circumstance, the statistical 
mean of echo signals is viewed as the wavelet signal, and 
thus the interlayer reflection coefficient is calculated. 
Moreover, all the discussed deconvolution algorithms 
calculate the reflection coefficient under the hypothesis that 
the wavelet is fixed, which disagrees with the changes of 
wavelet form during the transmission of GPR 
electromagnetic wave in loss medium. 
 On the basis of the traditional convolution model, 
Margrave et al. [16-17] proposed the Gabor convolution 
model for attenuation wavelet estimation in 1999. This 
model is built under the hypothesis that the interlayer 
reflection coefficient is a white noise sequence and that 
wavelet has a fixed attenuation coefficient. But in the 
process of electromagnetic wave transmission, wavelet is a 
time-varying signal and the attenuation coefficient is 
likewise relevant to transmission distance, reflection 
coefficient, and interlayer structure, which is contradicted to 
the hypothesis of fixed attenuation coefficient in Gabor 
convolution model. Therefore, the Gabor deconvolution 

algorithm cannot be applied directly to GPR layer 
recognition and signal enhancement. 
 Owing to the shortages of the existing deconvolution 
algorithm, the non-minimum phase sparsity deconvolution 
algorithm for GPR is explored. This proposed algorithm can 
be used to acquire accurate layer information, reconstruct 
GPR echo data, and enhance the disease echo signal. The 
rest of this paper is organized as follows. Section 3 
establishes the wavelet attenuation model under rebar 
coverage, analyzes the influencing factors of wavelet, 
studies the subspace sparsity deconvolution algorithm 
principle and its frame structure, and then constructs a 
multilayer medium model and realizes forward simulation 
based on finite-different time-domain (FDTD). Two 
conditions with and without echo overlapping are processed 
by the subspace sparsity deconvolution algorithm, thus 
verifying the feasibility of the proposed algorithm. Section 4 
analyses the influences of upper rebar to the lower void echo 
signal and discusses the robustness of the algorithm. Section 
5 presents the conclusion. 
 
 
3. Methodology 

 
3.1 Wavelet attenuation model 
In Fig. 1, the A-Scan GPR echo signal ( s ) in the RC 
structure with diseases includes the direct wave ( 1s ), strong 
reflection signal of rebar ( 2s ), void echo signal ( 3s ), and 
random noise ( n ). 
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Fig. 1. GPR echo in the multilayer structure 
  
 
 In Fig. 1, riε  is the relative permittivity of the thi  layer, 

riµ  is the relative permeability of the thi  layer, iσ  is the 

conductivity of the thi  layer, and N  is the total layer 
number in the model. 
 Under ideal conditions, the electromagnetic wave 
emitted by GPR is a determined wavelet ( )b t  (e.g., Ricker 
wavelet). The reflection coefficient ( ir ) is related to the 
electrical parameters and can be expressed as 
 

1

1

i i
i

i i

r η η
η η

+

+

−
=

+
     (2) 

 



Yang Yong, Du Yanliang, Zhao Weigang, Wang Baoxian and Zhao Hao/ 
Journal of Engineering Science and Technology Review 9 (6) (2016) 43-51 

 45 

where iη  and 1iη +  are wave impedances of the thi  layer and 

the ( 1)thi +  layer ( = /i i iη µ ε  and +1 1 1= /i i iη µ ε+ + ). 
 If the two-way travel time of the interface reflection echo 
recovered by the GPR antenna is it , then the reflection 
coefficient function( ( )g t ) of different interfaces can be 
expressed as the time function: 
 

1
( ) ( )

N

i i
i

g t r t tδ
=

= −∑      (3) 

 
 Owing to the differences of the background medium and 
structure, the influencing factors of the interlayer echo signal 
attenuation of electromagnetic wave from the GPR are 
different: 
 
(1) For lossless medium, when echoes of different interfaces 
are independent and there are no rebar coverages and echo 
overlappings, the echo signal of GPR can be expressed as 
follows: 
 

0

( ) ( ) ( ) ( ) ( )
t

s t b t g t b g t dτ τ τ
∞

=

= ∗ = −∫     (4) 

 
(2) For loss medium, when echoes of different interfaces are 
independent and there are no rebar coverages and echo 
overlappings, the amplitude attenuation and the two-way 
travel time ( t ) have an exponential relationship. The echo 
signal of GPR can be expressed as 
 

( )

0

( ) ( ) ( ) ( ) ( )at a t

t

s t b t g t e b g t e dττ τ τ
∞

− − −

=

= ∗ = −∫     (5) 

 
where α is the attenuation coefficient of the echo amplitude. 
(3) For loss medium, when echoes of different interfaces are 
independent and there is a rebar coverage with reflection 
coefficient 1r = −  as shown in Fig. 1. Two extreme 
conditions are considered. When the rebar diameter is 
infinite, no diffracted wave exists and the void echo signal 
approaches zero. With the reduction of rebar diameter, the 
energy of the diffraction wave increases and the void echo 
signal increases accordingly. Therefore, it is hypothesized 
that the rebar diameter is inversely proportional to the 
amplitude of the void echo signal. The inversely 
proportional ratio is the diffraction coefficient (DC), which 
is expressed by ( )tβ . Under these conditions, the echo signal 
of GPR can be rewritten as 

 

( )

0

( ) ( ) ( ) ( ) ( ) ( ) ( )at a t

t

s t b t t g t e b t g t e dτβ τ β τ τ τ
∞

− − −

=

= ∗ = − −∫  (6) 

 
 The ( )tβ  is the function about time and satisfies 
0 ( ) 1tβ≤ ≤ . Given a rebar diameter, ( )tβ  is a constant. 
When the rebar diameter is infinite, it is expressed 
as ( ) 0tβ = . When the rebar diameter is zero, the 
electromagnetic wave of void reflection interface is a direct 
wave and ( ) 1tβ = . Eq. (6) degrades into Eq. (5), where 
( ) 1tβ = , and Eq. (6) degrades into Eq. (4) where ( ) 1tβ =  

and 0α = . Therefore, Eqs. (4) and (5) are viewed as the 
special form of Eq. (6). 

 (4) For loss medium, echoes of different interfaces are 
independent, reflection coefficient 1r ≠ − , and some 
electromagnetic wave can transmit into the next layer. Its 
expression is the same as that of Eq. (6), except that DC is 
converted into the transmission coefficient. 
 
3.2 Deconvolution 
Deconvolution calculates the deconvolution factor that 
corresponds to the wavelet, thus getting signal processing 
method for layer information. With Eq. (4) as the example, 
the frequency-domain deconvolution often makes Fourier 
transforms to the two sides of the equation. According to the 
time-frequency relationship of convolution operation, Eq. (4) 
can be expressed as follows in frequency domain: 
 
( ) ( ) ( )S B Gω ω ω=      (7) 

 
where ( )S ω , ( )B ω , ( )G ω  are the Fourier transform 
of ( )s t , ( )b t , ( )g t . If the echo ( )s t  and wavelet ( )b t  are 
known, the reflection coefficient ( )g t  can be expressed as 
 
( )=IFT{ ( ) / ( )}g t S Gω ω     (8) 

 
where IFT{.} is the inverse Fourier transform operator. 

Time-domain deconvolution algorithm often uses the 
relationship between convolution and related operations. For 
instance, the spiking deconvolution hypothesizes that 
wavelet is the minimum phase and the noise signal is a white 
noise signal. To calculate and organize the convolution 
( (- )b t ) on the two sides of Eq. (4): 
 
( ) ( ) ( )bb bsR t g t R t∗ =       (9) 

 
where ( )bbR t  expresses the autocorrelation function of ( )b t  
and is a Toeplitz matrix. ( )bsR t  is the correlation matrix 
between ( )s t  and ( )b t . Thus, ( )g t  can be expressed as 
 

1( ) ( ) ( )bb bsg t R t R t−=     (10) 
 
where 1( )bbR t−  is the inverse of matrix ( )bbR t . 

Wavelet in the frequency-domain deconvolution is an 
estimation value that has some error with real value. 
Accordingly, the ( )g t  calculated from Eq. (8) has 
significant errors, which means the result is not composed of 
monopulse but has numerous shock signals. 

On the basis of the analysis in Section 3.1, the disease 
echo signal in RC structure has wavelet signal attenuation, 
which is attributed to two-way travel time of the 
electromagnetic wave, rebar size and coverage. This 
outcome contrasts with the hypothesis on the minimum 
phase system of the time-domain deconvolution algorithm. 

 
3.3 Subspace sparsity deconvolution 
An analysis of the time-domain deconvolution algorithm and 
frequency-domain deconvolution algorithm reveals that the 
existing deconvolution algorithms are inapplicable to the 
GPR layer information detection. Therefore, it is necessary 
to study the deconvolution algorithm applicable to GPR 
under layer sparsity conditions. 
 According to Eq. (6), the acquired interlayer reflection 
coefficient can be converted into the optimal solution of 
α , β , r , and N . Considering that α , β , r , and N  are 



Yang Yong, Du Yanliang, Zhao Weigang, Wang Baoxian and Zhao Hao/ 
Journal of Engineering Science and Technology Review 9 (6) (2016) 43-51 

 46 

coupling mutually, the optimization problem is changed into 
a high-dimension data problem, which is against solving. To 
optimize the solution and achieve fast convergence, the echo 
signal of the thi  layer in the layered structure is denoted as 
 
( ) ( ) ( ) ( )t
i i if t b t t re t tαβ δ−= ∗ −  (11) 

 
 The echo signal of the ( 1)thi +  layer is 
 

+1 +1 +1( ) ( ) ( ) ( )t
i i if t b t t r e t tαβ δ−= ∗ −  (12) 

 
 The Fourier transform of Eqs. (11) and (12) are 
calculated as 
 
( ) ( ) ( ) i it j t
i i iF B t re eα ωω ω β − −=  (13) 

 
+1 +1

+1 +1 1( ) ( ) ( ) i it j t
i i iF B t r e eα ωω ω β − −

+=  (14) 
 

A comparison of Eqs. (13) and (14) indicates that the 
amplitude ratio ( k ) and the phase difference ( θΔ ) are 
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1( )i it tθ ω +Δ = −     (16) 
 

The sampling time window in high-frequency GPR is 
often in nanoseconds, 1( ) 0i it t+ − → . Therefore, the phase 
difference is viewed as 0θΔ → , and the waveforms 
between two layers have only one coefficient difference k . 
As a result, the nearest layer of the echo signal is used to 
replace the wavelet signal when calculating the next layer 
information. The optimization problem of α , β , r , and 
N  changes to the optimal solutions of variables k  and N . 

Meanwhile, the error shall be restricted when calculating 
the optimal solutions of k  and N  because N  is an 
unknown. When the constraint error is relatively large, the 
interface with small reflection coefficient will be missed and 
the missing alarm will be sent. However, when the constraint 
error is small, new reflection interfaces will be formed and a 
false alarm will be sent. 

To overcome the above shortages, combined with the 
short time Fourier transform, a subspace window function is 
introduced. 

If the window function is ( )w t , the subspace can be 
expressed as follows: 

 
( ) ( ) ( )x t s t w t τ= −  (17) 
 
Meanwhile, the support interval of the selection window 

function ( ( )w t ) is 00 2t t< < , if the support interval of 
wavelet ( )b t  is 00 t t< < , where 00 t t< <  is the previous 
layer of electromagnetic wave whose time-domain 
coordinate of the echo peak is 0 / 2t . The possible next layer 
of electromagnetic echo peak may occur in the interval 
of 0 0,3( / 2 2)/tt . In this way, the problem that N  is an 
unknown in the whole interval is changed into the problem 
of N (0, 1) in the subspace 0 0,3( / 2 2)/tt . When 0N = , no 
new reflection layer is formed in the interval of 

0 0,3( / 2 2)/tt . However, when 1N = , the new reflection 
layer is formed in the interval of 0 0/ 2,  ( 3 )/ 2t t  . 

The electromagnetic echo overlapping between two 
adjacent layers (the thi  layer and the ( 1)thi +  layer) is shown 
in Fig. 2. Supposing that the wavelet after discretion is ( )b n  
and its support interval is   n = 1...P , where /P t t= Δ  and 
tΔ  is the sampling time interval. The support interval of two 

overlapping layers is   n = 1...2P . The critical echo signal 
overlapping that exists between the thi  layer and the ( 1)thi +  
layer is shown in Fig. 2(a). Moreover, the echo amplitude 
ratio between the thi  layer and the ( 1)thi +  layer is 0.8k = . 
The wavelet form of the electric field component E when the 
Ricker wavelet is used as the wavelet emitted by GPR 
antenna is shown in Fig. 2(b). The support interval of the 
wavelet has 200 sample points. The waveform overlapping 
between the thi  layer and the ( 1)thi +  layer under the 
interlayer interval of 100 sample points is shown in Fig. 2(c), 
where the amplitude ratio is 0.5k = . 
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Fig. 2. Echo overlapping (a) Critical echo overlapping of two layers; (b) 
Ricker wavelet; (c) Overlapping under the interlayer interval of 100 
sample points 
 
 
3.4 Fast algorithm implementation 
The key of fast implementing the subspace sparsity 
deconvolution lies in the selection of the initial wavelet, the 
settings of iteration step length, and constraint conditions. 
1. Initial wavelet 

Choosing the appropriate initial wavelet is the 
foundation for reducing error of layer number and acquiring 
accurate layer information. 

Circuits in the electromagnetic wave emission antenna 
made by different GPR factories (e.g., GSSI, IDS and Mala) 
are different, which leads to different initial wavelet. In 
general, the electromagnetic wave emitted by GPR antenna 
arrives first at the air-ground interface. Considering the 
difference of relative permittivity between air and ground, 
some electromagnetic wave reflections will be received by 
the GPR antenna and form direct waves. As air is a kind of 
lossless medium, the direct wave reflects the wavelet form 
emitted by the GPR antenna. Therefore, the direct wave is 
often chosen as the initial wavelet ( )b t . 
 
2. Iteration step length 
Supposing that the support interval of the current window 
function ( )w t τ−  is 02t tτ τ< < + , where τ is the start point 
and 02tτ +  is the end point. There are two situations 
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whether new reflection layers are formed on the interval of 

0 0/ 2 3 / 2t t tτ τ+ < < +  . 
(1) When a new reflection layer is formed, the location of 
the new reflection layer is tτ + Δ . The start point and end 
point of the new window functions are gained by updating 
t t t= + Δ , where 00 / 2t t< Δ < . 
(2) When there is no new reflection layer, the start point and 
end point of the new window function are gained by 
updating 0 / 2t t t= + . 
 
3. Constraint conditions 
 When the sampling time window is adequately long, the 
GPR antenna will receive enough echoes. Each echo data 
can be viewed as having equal energy: 
 

*

0

( ) ( )
t

s t s t dt c
∞

=

=∫   (18) 

 
where c is a constant, ( )s t  is the A-Scan echo signal, and * 
is a complex conjugate. 

Eq. (18) can also be expressed as the signal emitted by 
GPR transmitting antenna with energy of c, and all energies 
are reflected between layers and received by the receiving 
antenna. Therefore, the superficial echo has a large energy, 
whereas a deep echo has a small energy in the GPR map. 
With respect to constraints, superficial echo has a big 
constraint value and deep echo has a small constraint value. 
In the RC structure, reflection echo energy of the upper layer 
is generally larger than the sum of the rest layers. Hence, the 
constraint value under initial condition is expressed as 

/ 2threshold c= . Moreover, the constraint value is updated 
accordingly upon each update of the wavelet: 

 
( ), *( ) / 2threshold threshold b n b n= −  (19) 

 
where ( )b n  is the discrete form of ( )b t . The A-Scan echo 
signal-processing flowchart of GPR is shown in Fig. 3. 

 
3.5 Forward simulation  
To verify the feasibility of the algorithm, an RC structural 
disease model was established for contrastive analysis of 
forward simulations of different algorithms under different 
conditions. 
 The test model uses the concrete structure as background, 
which contains rebar and void diseases at the lower part of 
the rebar (Fig. 4). 
 The model size is (1.0 m, 0.25 m), and the concrete 
medium parameters are ( , , ) (9,  1,  0.1)r rε µ σ = . The void 
parameters are ( ,  ,  ) (1,  1,  0)r rε µ σ =  with depth 2 0.2h =  m. 
The rebar diameter is 1d =  cm. The depth from rebar to the 
ground ( 1h ) is set as a variable ( 1 3h =  cm and 5 cm) to test 
the performances of the echo signal in subspace sparsity 
deconvolution algorithm under different conditions. 
 The forward numerical simulation is applied with the 
electromagnetic wave simulation software GPRMax [21-22] 
based on the FDTD [18-20]. The simulation parameters are 
listed in Table 1. 
 Simulation results are shown in Fig. 5. The echo signal 
in Fig. 5 includes direct wave, rebar echo, and void echo. 
The echo data when 1 5h =  cm are shown in Fig. 5(c). The 
extracted A-Scan echo data when rebar is above the void 

disease in Fig. 5(c) are shown in Fig. 5(d). The start location 
and peak of three interlayer echoes are clear. The echo data 
when 1 3h =  cm are shown in Fig. 5(a). The A-Scan echo 
data extracted when the rebar is above the void disease in 
Fig. 5(a) are shown in Fig. 5(b). The direct wave and rebar 
echo overlap because of the short spatial distance between 
them. The start position of rebar echo is ambiguous, which is 
against further data processing. 
 
Table 1. Forward simulation parameters 

Properties Value Properties Value 

Wavelet Ricker Frequency 
/(MHz) 2000 

Time window/(ns) 6 Samples 1007 

Trace interval/(mm) 0.5 Grid size 
/(mm,mm) (2,4) 

 

 
Fig. 3. Flowchart of the subspace sparsity deconvolution algorithm 
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Fig. 5. Forward simulation results (a) B-Scan result with 1 3h = cm; (b) An A-Scan plot in (a) where  44trace number = ; (c) B-Scan result 

with 1 5h = cm; (d) An A-Scan plot in (c) where  44trace number = . 

 
 First, A-Scan echoes in Figs. 5(b) and (d) are processed 
by the subspace sparsity deconvolution algorithm. Results 
are shown in Fig. 6. 
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 Fig. 6 shows that the three interfaces are very clear 
regardless of the overlapping that exists between rebar echo 
and direct wave, the information about layer locations and 
numbers are reflected accurately. Normalization results at 
the overlapping of rebar echo and direct wave in Fig. 5(a) 
are shown in Fig.7. The direct wave, rebar echo, and void 
echo are explicit, and the start position of the echo has clear 

boundaries. In particular, the void echo under rebar coverage 
is significantly enhanced, thus providing a good data basis 
for further disease recognition. 
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Fig. 7. Reconstructed GPR echo with 1 3h = cm 
 
 
4 Result Analysis and Discussion 
 
4.1 Interference of rebar coverage to void echo 
Influences of rebar coverage on void echo are mainly 
manifested by echo intensity attenuation, echo delay, and 
waveform overlapping. 
 
1. Influences on void echo intensity and echo time 
 Rebar is viewed as a singular point in concrete medium. 
The electromagnetic wave refracts and reflects on surfaces 
of two media. Given that the rebar is a good conductor with 
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an internal electric field intensity of 0E = , rε =∞ , then 
reflection coefficient 1r = −  and refraction coefficient 

0ξ = . According to the Huygens principle, the echo on each 
point of the rebar can be regarded as a new wave source, and 
some echoes are transmitted to void disease surface through 
diffraction. This demonstrates that the electromagnetic wave 
intensity that transmits to the void surface through 
diffraction with rebar coverage is smaller than that without 
rebar coverage. 
 A comparison between the covered and uncovered trace 
void echoes at the same time is shown in Fig. 8. The 
amplitude is about 40 V/m under no rebar coverage and 
decreases by 50% to 20 V/m under rebar coverage. 
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Fig. 8. Comparisons between the covered and uncovered void echo 

traces 

 
 Meanwhile, the signal echo at the lower part of rebar 
first arrives at the void disease surface through diffraction 
according to the Fermat theorem. The travel path is longer 
than that under no rebar coverage. In other words, a delay 
exists between the covered void echo and the uncovered 
void echo, as Fig. 8 shows. 
2. Waveform overlapping 
 Fig. 5(a) illustrates that in the simulation calculation 
process, the antenna moves from the left to the right along 
the survey line. The direct distance between rebar and 
antenna differs with the location of antenna, a difference that 
is manifested by a hyperbolical characteristic curve on the 
GPR echo. Furthermore, considering that the ground 
background medium is a kind of loss medium, the amplitude 
of electromagnetic wave decreases with the increase of the 
propagation distance ( l ) in the transmission process. An 
exponential relationship between E and l exists as well. 
 

/
0| | l vE E e α−=   (20) 

 
where E is the electromagnetic wave amplitude , and when 
0l = , 0E E= , v  is the velocity of the electromagnetic 

wave, and α  is the amplitude attenuation coefficient. 
The rebar echo and void echo overlap when the time 

interval difference between them is smaller than the wavelet 
support interval. The comparisons between the covered and 
uncovered void echoes at the same space are shown in Fig. 9. 
 Red line in Fig. 9 is the void echo signal under no rebar 
coverage and the blue line is the void echo signal under 
rebar coverage. Fig. 9 shows that the echo amplitude in the 
rebar-covered region is smaller than that of the echo 

amplitude in the rebar-uncovered region, a finding that 
agrees with the above discussion results. Owing to the 
violent fluctuation at two sides of the coverage, the 
maximum amplitude in the rebar-covered region is larger 
than that in the rebar-uncovered region, which is attributed 
to the additive interference signal caused by the overlapping 
of rebar echo and void echo, which prevents the extraction 
of disease characteristics. 

 
4.2 Comparisons of different algorithms 
To compare the processing results of different algorithms, 
the frequency-domain deconvolution algorithm and the 
spiking deconvolution algorithm processed the simulation 
results in Section 3.2. Fig. 10 shows the processing results of 
different algorithms when 1 3h =  cm in Fig. 5(b). 

A comparison between Figs. 10 and Fig. 6 suggests that 
the reflection coefficient returned by frequency-domain 
deconvolution algorithm has too many noise signals and 
cannot reflect interlayer positions. The spiking 
deconvolution algorithm fails to achieve the actual effect 
because the wavelet is in the non-minimum phase wavelet. 
According to Fig. 6, the subspace sparsity deconvolution 
algorithm can acquire accurate reflection layer information 
of the RC structure. 
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 44trace number =  and 1 3 h =  cm. (a) Processing result with 
frequency deconvolution; (b) Processing result with spiking 
deconvolution 
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4.3 Noise suppression 
 
To verify the noise suppression of the proposed algorithm, 
the white Gaussian noise (WGN) with different SNR (6-10 
dB) was added to A-Scan echo signals in Fig. 5(b). The 
synthesis signals based on the original data when 10SNR =  
dB and 10SNR =  dB are shown in Fig. 11. 
 In Fig. 11, the direct wave and rebar echo signal are 
distinct owing to the high intensity. However, the void echo 
is basically flooded by noise signal and its location cannot 
be identified accurately. The proposed algorithm processes 
echo data. When 10SNR =  dB, the void echo processing 
result is equal to the the layer location without noise signal. 
When 10SNR <  dB, the layer location shifts backward. 
When 6SNR <  dB, the layer information is completely 
invalid. The processing results of void layer information 
under different SNR are shown in Table 2. 
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Fig. 11. Single trace data with WGN (a) 10SNR =  dB; (b) 6SNR =  dB 

 
Table 2. Calculated void layer location with different WGN 

Index SNR/(dB) void location 
1 ∞ 522 
2 10 522 
3 9 523 
4 8 525 
5 7 528 
6 6 528 
7 5 / 

 
 The applied WGN is the signal gained when the whole 
sampling interval has the same SNR. Given the high direct 
wave and rebar echo intensity, the energy intensity ratio 
between the applied WGN and the void echo is significantly 
higher than that of the whole sampling interval. According 
to the measured results, the SNR of WGN applied to the 
void echo is -19.7 dB when the SNR of the whole sampling 
interval is 6 dB, indicating that the proposed algorithm can 
acquire void layer location information accurately when 
local 19.7SNR ≥ −  dB. 

 
5. Conclusions 
 
The non-minimum phase deconvolution interlayer 
positioning and the echo enhancement algorithm were 
studied to enhance GPR echo signal in an RC medium. They 
were also conducted to overcome the contrast between the 
existing deconvolution algorithms’ hypothesis of the 
minimum phase and the varying propagation characteristics 
of electromagnetic wave in loss medium. A multilayer 
medium model was established based on the equation of 
electromagnetic wave, and the wavelet attenuation 
characteristics of GPR electromagnetic wave under different 
conditions were described. The influences of rebar on lower 
void echo were analyzed and the subspace sparsity 
deconvolution algorithm was proposed. Next, the proposed 
algorithm was compared with other algorithms through 
experiments. Finally, the following conclusions are drawn: 
(1) The influences of rebar on lower void echo signal are 
mainly manifested by the attenuation of disease echo 
intensity, echo delay, and echo overlapping. An exponential 
relationship between echo intensity and the two-way travel 
time exists. The longer the two-way travel time, the weaker 
the echo intensity. The void echo intensity is inversely 
proportional to the rebar diameter. Rebar diffraction brings a 
delay between covered and uncovered void echoes. The void 
echo and rebar echo overlap when the distance between 
rebar and the void disease is shorter than the wavelet, thus 
producing additive interference signal. 
(2) The proposed subspace sparsity deconvolution algorithm 
does not depend on the minimum phase hypothesis and 
overcomes disagreement between existing algorithms (e.g., 
spiking deconvolution algorithm) and transmission 
characteristics of the electromagnetic wave of GPR. 
Moreover, it is applicable to acquire echo layer information 
under conditions with and without echo overlapping. 
(3) The involvement of wavelet iteration update and time 
window subspace enhances interlayer echo signal and 
increases SNR quickly and effectively. The experiment 
demonstrates that the proposed algorithm can eliminate 
noise interference and acquire void layer location accurately 
when 19.7SNR ≥ −  dB. 
 The subspace sparsity deconvolution algorithm is 
proposed based on theoretical analysis and numerical 
simulation, which overcomes the restriction of the wavelet 
minimum phase of deconvolution algorithms. This algorithm 
can be used to enhance disease echo signal under rebar 
coverage in the multilayer RC structure, especially CA 
mortar void diseases in high-speed railway ballastless tracks. 
In actual processing, the echo signal of GPR is influenced by 
various factors. The high-speed railway ballastless track 
disease can be detected more accurately by combining the 
proposed algorithm and echo preprocessing. 
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