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___________________________________________________________________________________________ 

Abstract 

A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and 
long-range trajectories of small bullets via atmospheric flight to final impact point. The mathematical model is 
based on the full equations of motion set up in the no-roll body reference frame and is integrated numerically from 
given initial conditions at the firing site. The projectile maneuvering motion depends on the most significant force 
and moment variations, in addition to gravity and Magnus effect. The computational flight analysis takes into 
consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. 
For the purposes of the present work, linear interpolation has been applied for aerodynamic coefficients from the 
official tabulated database. The developed computational method gives satisfactory agreement with published data 
of verified experiments and computational codes on atmospheric projectile trajectory analysis for various initial 
firing flight conditions. 
 
Keywords:  constant and variable aerodynamic coefficients, six degrees of freedom 
___________________________________________________________________________________________ 

 

Nomenclature
CD    = drag force aerodynamic coefficient 
CL     = lift force aerodynamic coefficient 
CLP    = roll damping moment aerodynamic coefficient 
CMQ    = pitch damping moment aerodynamic coefficient 
CMA    = overturning moment aerodynamic coefficient 
CYPA    = Magnus moment aerodynamic coefficient 
x, y, z    = projectile position coordinates in the inertial frame, m 
m    = projectile mass, kg 
D                 =     projectile reference diameter, m 
s                   =   dimensionless arc length 
V                  = total aerodynamic velocity, m/s 

w~,v~,u~   = projectile velocity components expressed in the no-roll-    
    frame, m/s 
p~ , r~,q~     = projectile roll, pitch and yaw rates in the moving frame,  

    respectively, rad/s 
g                 =   gravity acceleration, m/s2 

 

 

 
 
I                  =    projectile inertia matrix  
IXX              =    projectile axial moment of inertia, kg·m2 

IYY              = projectile transverse moment of inertia about y-axis  
     through the center of mass, kg·m2 
ΙΧΧ, ΙΥΥ, ΙΖΖ   = diagonal components of the inertia matrix  
ΙΧΥ, ΙΥΖ, ΙΧΖ   =    off-diagonal components of the inertia matrix 
LEMCM        =   distance from the center of mass (CG) to the Magnus  
    center of pressure (CM) along the station line, m   
LEMCP       =   distance from the center of mass (CG) to the 
    aerodynamic center of pressure (CP) along the station  
    line, m 
ρ   =  density of air, kg/m3 

φ , θ, ψ  =  projectile roll, pitch and yaw angles, respectively, deg 
α, β            =   aerodynamic angles of attack and sideslip, deg 

Subscripts
o          =  initial values at the firing site 
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1. Introduction 
 

Ballistics is the science that deals with the motion of 
projectiles. The word ballistics was derived from the Latin 
“ballista”, which was an ancient machine designed to hurl a 
javelin. The modern science of exterior ballistics [1] has 
evolved as a specialized branch of the dynamics of rigid 
bodies, moving under the influence of gravitational and 
aerodynamic forces and moments. Exterior ballistics existed 
for centuries as an art before its first beginnings as a science. 
Although a number of sixteenth and seventeenth century 
European investigators contributed to the growing body of 
renaissance knowledge, Isaac Newton of England (1642-1727) 
was probably the greatest of the modern founders of exterior 
ballistics. Newton’s laws of motion established, without which 
ballistics could not have advanced from an art to a science. 
 Pioneering English ballisticians Fowler, Gallop, Lock and 
Richmond [2] constructed the first rigid six-degree-of-freedom 
projectile exterior ballistic model.  
 The present work address a full six degrees of freedom (6-
DOF) projectile flight dynamics analysis for accurate 
prediction of short and long range trajectories of small bullets. 
The proposed flight dynamic model takes into consideration 
the influence of the most significant force and moment 
variations, in addition to gravity and Magnus effect. The 
applied aerodynamic coefficient analysis takes into 
consideration the variations depending on the Mach number 
flight and total angle of attack. 
 The efficiency of the developed method gives satisfactory 
results compared with published data of verified experiments 
and computational codes on dynamics model analysis of short 
and long-range trajectories of spin-stabilized projectiles and 
small bullets.  
 

2. Projectile Model 
 
The present analysis consider a 0.30 caliber (0.308″ diameter), 
168 grain (≈ 10.9 gr) Sierra International bullet used by 
National Match M14 rifle is loaded into 7.62 mm M852 match 
ammunition for high power rifle competition shooting, as 
shown in Fig.1,2. The cartridge is intended and specifically 
prepared for used in those weapons designed as competitive 
rifles and for marksmanship training. This bullet is not for 
combat use. The cartridge case head stamping of MATCH 
identify the cartridge. It also has a knurl at the base of the 
cartridge case and a hollow point boat-tail bullet. 
 Basic physical and geometrical characteristics data of the 
above-mentioned 7.62 mm bullet illustrated briefly in Table 1. 

 

Fig. 1 7.62 mm bullet 

Fig. 2 7.62 mm match ammunition with a diameter of 0.30 caliber 
representative small bullet types. 
 

 
Table 1. 
Physical and geometrical data of 7.62 mm small bullet type. 

 
Characteristics 7.62 mm M852 bullet 

Reference diameter, mm 7.62 
Total length, mm 71.88 
Total mass, kg 0.385 
Axial moment of inertia, kg·m2 7.2282·10-8 
Transverse moment of inertia, 
kg·m2 

5.3787·10-7 

Center of gravity from the base, 
mm 

12.03 

3. Trajectory Flight Simulation Model 
 
A six degree of freedom rigid-projectile model [2], [3], [4], [5] 
has been employed in order to predict the "free" atmospheric 
trajectory to final target area without any control practices. The 
six degree of freedom flight analysis comprises the three 
translation components (x, y, z) describing the position of the 
projectile’s center of mass and three Euler angles (φ, θ, ψ) 
describing the orientation of the projectile body with respect to 
Fig.3. 

 

 
Fig 3.  No-roll (moving) and fixed (inertial) coordinate systems for 

the projectile trajectory analysis. 
 
 

Two main coordinate systems are used for the 
computational approach of the atmospheric flight motion. The 
one is a plane fixed (inertial frame) at the firing site. The other 
is a no-roll rotating coordinate system on the projectile body 
(no-roll-frame, NRF, φ = 0) with the XNRF axis along the 
projectile axis of symmetry and YNRF, ZNRF axes oriented so as 
to complete a right hand orthogonal system. 
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 

totF
dt
Vdm

r
r

=               (1) 

totM
dt
Hd r
r

=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 

totF
dt
Vdm

r
r

=               (1) 

totM
dt
Hd r
r

=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 
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dt
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where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
 

V
Dsincosw~v~sinV

Du~coscosV
Dx θψψθψ +−=′           (3)                      

 

V
Dsinsinw~V

Dcosv~u~sincosV
Dy ψθψψθ ++=′             (4)                         

     
               

θθ cosw~V
Du~sinV

Dz +−=′                                              (5)                        

     
r~tanV

Dp~V
D θφ +=′             (6) 

q~
V
Dθ =′               (7) 

r~
θcosV

Dψ =′                             (8)                                    

                                        

w~
V

D
q~r~

V

D
v~22

D
CV

m8
3D

22
D

CV
m8

3D
D

C3DV
m8

sing
V

D
u~

−+−

−−−−=′

βρ
π

αρ
π

ρ
π

θ
   (9)

 

( ) ur
V

D
wp

V

D
vDCLC

m
Dv ~~tan~~~

8
3~ −−+−=′ θρ
π

     (10) 

 
                               

( ) vp
V

D
uq

V

D
wDCLC

m
Dg

V

D
w ~~tan~~~

8
3cos~ θρ
π

θ +++−=′      (11)   

 

  LPCp~

XXI16
5Dp~ ρ

π
=′                                       (12)      

        

( )

θρ
π

ρ
π

ρ
π

ρ
π

tan2~~~
8

4~
16

5

~
~

16
4~

8
3~

r
V

D
p

YYI
XXI

r
V

D
MAC

YYI
DqMQC

YYI
D

MCMLE
V
v

pYPAC
YYI

DMCPLEwDCLC
YYI

Dq

−−++

+++=′ ⎟
⎠
⎞

⎜
⎝
⎛

     (13) 

 
                

( )

θρ
π

ρ
π

ρ
π

ρ
π

tan~~~~
8

4~
16

5

~
~

16
4~

8
3~

rq
V

D

YYI
XXI

qp
V

D
MAC

YYI
DrMQC

YYI
D

MCMLE
V
w

YPACp
YYI

DMCPLEvDCLC
YYI

Dr

++−+

+++−=′ ⎟
⎠
⎞

⎜
⎝
⎛

     (14) 

  
 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 

totF
dt
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totM
dt
Hd r
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=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 
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dt
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where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 
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where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 

totF
dt
Vdm

r
r

=               (1) 

totM
dt
Hd r
r

=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 

totF
dt
Vdm
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totM
dt
Hd r
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=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 

totF
dt
Vdm

r
r

=               (1) 

totM
dt
Hd r
r

=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
 

V
Dsincosw~v~sinV

Du~coscosV
Dx θψψθψ +−=′           (3)                      

 

V
Dsinsinw~V

Dcosv~u~sincosV
Dy ψθψψθ ++=′             (4)                         

     
               

θθ cosw~V
Du~sinV

Dz +−=′                                              (5)                        

     
r~tanV

Dp~V
D θφ +=′             (6) 

q~
V
Dθ =′               (7) 

r~
θcosV

Dψ =′                             (8)                                    

                                        

w~
V

D
q~r~

V

D
v~22

D
CV

m8
3D

22
D

CV
m8

3D
D

C3DV
m8

sing
V

D
u~

−+−

−−−−=′

βρ
π

αρ
π

ρ
π

θ
   (9)

 

( ) ur
V

D
wp

V

D
vDCLC

m
Dv ~~tan~~~

8
3~ −−+−=′ θρ
π

     (10) 

 
                               

( ) vp
V

D
uq

V

D
wDCLC

m
Dg

V

D
w ~~tan~~~

8
3cos~ θρ
π

θ +++−=′      (11)   

 

  LPCp~

XXI16
5Dp~ ρ

π
=′                                       (12)      

        

( )

θρ
π

ρ
π

ρ
π

ρ
π

tan2~~~
8

4~
16

5

~
~

16
4~

8
3~

r
V

D
p

YYI
XXI

r
V

D
MAC

YYI
DqMQC

YYI
D

MCMLE
V
v

pYPAC
YYI

DMCPLEwDCLC
YYI

Dq

−−++

+++=′ ⎟
⎠
⎞

⎜
⎝
⎛

     (13) 

 
                

( )

θρ
π

ρ
π

ρ
π

ρ
π

tan~~~~
8

4~
16

5

~
~

16
4~

8
3~

rq
V

D

YYI
XXI

qp
V

D
MAC

YYI
DrMQC

YYI
D

MCMLE
V
w

YPACp
YYI

DMCPLEvDCLC
YYI

Dr

++−+

+++−=′ ⎟
⎠
⎞

⎜
⎝
⎛

     (14) 

  
 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 

totF
dt
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totM
dt
Hd r
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=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 
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dt
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=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 

totF
dt
Vdm

r
r

=               (1) 

totM
dt
Hd r
r

=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 

totF
dt
Vdm
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=               (1) 

totM
dt
Hd r
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=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 

totF
dt
Vdm

r
r

=               (1) 

totM
dt
Hd r
r

=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 

totF
dt
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totM
dt
Hd r
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=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
equations of motion for six-dimensional flight are derived:   
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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Newton’s laws of the motion state that the rate of change 
of linear momentum must equal the sum of all the externally 
applied forces and the rate of change of angular momentum 
must equal the sum of the externally applied moments, as 
shown respectively in the following forms: 
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dt
Hd r
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=                                                           (2) 

 
where the total force acting on the projectile comprises the 
weight, the aerodynamic force and the Magnus force. 
Moreover, the total moment vector comprises the moment due 
to the standard aerodynamic force, the Magnus aerodynamic 
moment and the unsteady aerodynamic moment. 
 Therefore, the twelve state variables x, y, z, φ, θ, ψ, u, v, 
w, p, q and r are necessary to describe position, flight direction 
and velocity at every point of the projectile’s atmospheric 
flight trajectory. Introducing the components of the acting 
forces and moments expressed in the no-roll-frame (~) rotating 
coordinate system in Eqs (1, 2) with the dimensionless arc 
length s as an independent variable, the following full 
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 The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations, which 
are solved simultaneously by resorting to numerical integration 
using a 4th order Runge-Kutta method. In these equations, the 
following sets of simplifications are employed: velocity 
u~ replaced by the total velocity V because the side velocities 

and  are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,

v~ w~

V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ and 
aerodynamically symmetric. With the aforementioned 
assumptions, the expressions of the distance from the center of 
mass to the standard aerodynamic and Magnus centers of 
pressure are simplified. 
 

4. Initial Spin Rate Estimation 
 
In order to have a statically stable flight projectile trajectory 
motion, the initial spin rate 0p~ prediction at the gun muzzle in 
the firing site us important. According to McCoy definitions 

[1], the following form is used: 
                                                            

)s/rad(D/V2p~ 00 ηπ=                                              (15)  
 

where is the initial firing velocity (m/s), oV η the rifling twist 
rate at the gun muzzle (calibers per turn), and D the reference 
diameter of the projectile type (m). Typical values of rifling 
twist η  are 1/18 calibers per turn for big projectile and 12 
inches per turn for small bullet, respectively. 
 

5. Computational Simulation 
 

The flight dynamic model of 7.62 mm bullet involves the 
solution of the set of the twelve nonlinear first order ordinary 
differentials, Eqs (3-14), which are solved simultaneously by 
resorting to numerical integration using a 4th order Runge-
Kutta method, and regard to the 6-D nominal atmospheric 
projectile flight.  
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 The constant [7], [8] dynamic flight model uses mean 
values of the experimental aerodynamic coefficients variations 
[1] (see table 2). 
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 The results give the computational simulation of the 6-D 
non-thrusting and non-constrained flight trajectory path for 
some specific big projectiles and small bullets types. Initial 
flight conditions for the dynamic flight simulation model with 
constant and variable aerodynamic coefficients are illustrated 
in Table 3 for the examined test case. 
 
 
Table 3. 
Initial flight parameters of the projectile examined test cases. 

6. Results and Discussion 

The flight path trajectories of the present dynamic model with 
initial firing velocity of 793 m/sec and rifling twist 12 inches 
per turn at initial pitch angles of 1° ,7°and 15° are indicated in 
Figure 4 for two cases: constant7 and variable8 aerodynamic 
coefficients. The small bullet is examined for its atmospheric 
constant flight trajectories predictions in Fig. 4, fired at no 
wind sea-level conditions at 1o gives a range to impact at 1,190 
m with a maximum height at almost 6.7 m. At 7o, the predicted 
level-ground range is approximately 2,778 m and the height is 
150 m, and at 15 degrees the impact point and the height are 
3,410 m and 440 m, respectively.  

 
Fig 4. Impact points and flight path trajectories with constant and variable 
aerodynamic coefficients for 7.62 mm bullet at low and high quadrant 
elevation angles of 1o, 7o, and 15o. 

 
 
 The same figure shows the trajectory flight path of 7.62 
mm bullet with variable aerodynamic coefficients, and at 1o  
pitch angle gives range almost 1 km with height 6 m, at 7 
degrees gives impact point 2,600 m and height 125 m and at 
15 degrees the range and the height are 3,545 m and 388 m, 
respectively.  There is big difference with the flight path 
trajectory with constant aerodynamic coefficients.  
 

 
Fig 6. Velocity versus range with constant aerodynamic coefficients for 
105 mm projectile. 
 
 Furthermore, the computational results for 7.62 mm bullet 
flight path with constant and variable aerodynamic coefficients 
at elevation angles of 1°, 7° and 15° are illustrated in Fig. 5 
and 6. At pitch angle of 1 degree, the velocity for the flight 
path with constant aerodynamic coefficients decreases to the 
values of almost 350 m/sec and 300 m/sec with variable 
aerodynamic coefficients. At pitch angle of 7 degrees, the 
velocity decreases to the values of almost 124 and 169 m/sec. 
Moreover, at pitch angle of 15 degrees the velocity decreases 
to values of 101 and 132 m/sec, respectively.  
 
 
 
 
 
 
 
 
 

 Initial flight data 7.62 mm bullet 
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 Moreover, from the results of the presented applied method 
with variable constant aerodynamic coefficients, at 1°, 7° and 
15° pitch angles, the roll rate decreases to the values 14,620 
rad/s, 11,626 rad/s and 10,583 rad/s, respectively.( Fig. 9) 
 

 

Fig 7. Velocity versus range of 7.62 mm M852 bullet at initial elevation 
angles of 1o, 7o and 15o. 
 
 Figure 8 shows the time of the flight trajectory with 
constant and variable coefficients, at sea level with no-wind 
for 7.62 mm bullet at elevation angles 1o, 7o and 15o. The 
bullet with initial firing velocity of 793 m/s, gives values of 
time 2,3 sec,  9,5 sec and  17 sec, respectively.  

 
Fig 9. Roll rate versus range at elevation angles of 1, 7 and 15 degrees, for 
7.62mm bullet with variable and constant aerodynamic coefficients.   

 

7. Conclusion 
 

The complicated six degrees of freedom (6-DOF) simulation 
flight dynamics model is applied for the accurate prediction of 
short and long-range trajectories results for small bullets. It 
takes into consideration the Mach number and the total angle 
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