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1.  Introduction 
 
Dynamic programming is a general mathematical method 
that can reduce the complexity of optimization problems, by 
decomposing them into simpler and smaller problems [1]. It 
can be used in order to handle the stereo-correspondence 
problem by finding an optimized solution for the whole 
scan-line. In this sense the problem is solved globally, as 
opposed to local methods that find correspondences between 
local blocks [2,3]. In general, global methods produce better 
results and can resolve problems like lack of texture and 
occlusion [4,5]. However, such methods suffer because of 
their considerable computational cost. 
 Stereo vision dynamic programming exploits two geo-
metrical constraints that apply to depth calculation by two 
parallel cameras. These are the epipolar constraint [2] and 
the monotonic ordering constraint [6]. The first means that 
in rectified stereo pairs the search for correspondences be-
tween stereo frames can be limited only to epipolar scan-
lines. The second means that if a correspondence between 
two points A and B is established, then the next point on the 
right of A in one image can only correspond to a point to the 
right of B in the other image. This idea is shown in Fig. 1. It 
should be noted however, that the relative order of pixels 
between the two views is not always the same in real scenes. 
 The main idea behind a dynamic programming algorithm 
for stereo matching is to build a Disparity Space Image 

(DSI), attributing a cost value to all disparities and establish-
ing best global disparities by backtracking the optimal path 
[7]. The cost of optimal path is the sum of the costs of the 
partial paths obtained recursively.    

 
 

 

Fig. 1 The monotonic ordering constraint in stereo-vision. Finding the 
correspondence between two conjugate points in a stereo-pair means 
that all other correspondences lie to the right of the two points in both 
left and right images.          

 
Fig. 2 Minimizing path (on the right) is determined by calculating re-
cursively a cost function. Each point in the cost function (on the left) is 
derived from the three previous values, as shown by the arrows.  Dis-
parities are tallied in a next stage, by backtracking the path of minimum 
cost.                
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 One way to build the Disparity Space Image is to define 
x and y axis as the left and right scan-lines and then calcu-
late the minimum cost path from the lower left corner to the 
upper right corner of the Disparity Space [8,9]. One always 
proceeds from left to right, as a result of the ordering con-
straint. This procedure is shown in Fig. 2, where each point 
of the 2-D cost function is determined by taking into account 
the previously calculated cost values of the three neighbor-
ing points to the left. Finding the correct disparities is now 
akin to finding the path in DSI which takes the shortest route 
through the cost values. Also, special rules can be added on 
how to transverse the search space in order to handle occlu-
sion.    
 This paper presents some considerations about imple-
menting parts of the dynamic programming stereo vision 
algorithm in reconfigurable hardware. Solutions are indi-
cated to the main obstacles posed by the recursive nature of 
the algorithm. First, a state-machine is proposed, which is 
able to produce part of the Disparity Space plane at clock 
rate, in parallel with the pixel input stream of the left and 
right image. Also a RAM-based backtracking scheme is 
proposed that works at second pass and in step with the next 
scan-line input. These considerations can result in a real-
time fully parallel hardware pipeline that produces dispari-
ties for a dense depth map at clock-rate.  

 

2. Summary of the algorithm  
 
Let us consider two scan-lines Il(i) and Ir(j), in the left and 
right image, with 1≤ i,j ≤N, where N is the number of pixels 
in each line. While building the cost plane, pixels on each 
scan-line may be matched or skipped (considered to be oc-
cluded in either the left or right image). Therefore, two kinds 
of measures are considered. The first is the measure of 
matching two pixels i, j on the left and right scan-line re-
spectively. The other is the measure of pixel i not matching 
pixel j, or in other words pixel j in the right scan-line being 
skipped in the search for a matching pixel for i. Correspond-
ingly, pixel i could be skipped while looking for a matching 
pixel for j.  
 Let sij be the measure associated with matching pixel Il(i) 
with pixel Ir(j). Α squared error metric is considered between 
pixels given by: 

 

2
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where σ represents pixel noise. The measure of skipping a 
pixel in either scan-line is given by a constant occl. We take 
occl=0.2 and σ = 0.1. 

Taking these measures into account, the minimizing 
alignment cost of two scan-lines can be calculated, accord-
ing to the following recursive procedure: 

 
a. C(i,0)=i x occl                (2) 

  
   C(0,i)= i x occl                                               (3) 
        
   C(1,1)=s11                  (4) 
 

b. C(i,j)=min{C(i-1,j-1)+sij, C(i-1,j)+occl, C(i,j-1)+occl}  (5) 
 

Eqs. (2) and (3) calculate initial costs on the x and y 
axis. Eq. (5) defines the cost at each point of the DSI plane 

as the minimum between matching cost and left or right 
occlusion cost. For a particular point in the cost-plane, the 
cost of matching pixels i,j comes from adding sij to the left 
diagonal cost, while the costs of left or right occlusion come 
from adding the occlusion constant to the previous cost on 
the horizontal and the vertical (Fig. 2). In this way, the cost 
of the optimal path is the minimum sum of the partial costs.   
The total cost of matching two scan-lines is C(N,N).   

 
c.  Depending on which of the three values in the paren-

thesis wins (see eq. (5)), a respective tag value 1,0,-1 
is attributed to point (i,j) of the disparity  space image. 
Intermediate values are stored in a matrix M with di-
mensions NxN.  Given M, the optimal alignment and 
consequent disparities are found by backtracking. 

d.   Backtracking is defined as follows. Starting at 
(i,j)=(N,N), corresponding stored values M(i,j) are ex-
amined. The case of M=1 corresponds to skipping a 
pixel in Il and to a unit increase in disparity. The case 
of M=-1 corresponds to skipping a pixel in Ir and 
means a unit decrease in disparity, while M=0 matches 
pixels (i,j) and therefore leaves disparity unchanged. 
Beginning with zero disparity, the minimum cost path 
is followed backwards from (N,N), and the disparity is 
tallied until point (1,1) is reached. 

 
 An efficient software implementation of dynamic pro-
gramming can be found in Ref [10]. 
 A variation of the above algorithm is used for our hard-
ware considerations in the following paragraphs. 
 
 
3.  Hardware considerations 

 
Designing with hardware all parallel calculations are ideally 
scheduled to be performed in step with the input stream of 
left and right image scan-lines. However the individual char-
acter of dynamic programming poses certain difficulties to 
such implementations. In particular, the recursive calculation 
of the cost function means that for each computation of a 
new subset of cost states, all necessary previous states need 
to have already been evaluated. Therefore, a proper course 
of calculations has to be established so that the computation 
of the cost plane proceeds without major errors. Also, an 
adequate slice of the cost-function along the optimal path 
has to be indicated, instead of the NxN total states, in order 
to render the hardware derivation of the cost-states a tracta-
ble task.  
 On the other hand, the need to backtrack disparities 
means that the final disparities can not be calculated in step 
with the stream of their respective scan-lines, but only dur-
ing a second pass, while the next pair of epipolar scan-lines 
is already streaming through the hardware pipeline. There 
follows the need for local memory that can store cost values 
until backtracking calculations end. 

A third consideration arises from the need to map the 2-
D cost-function plane (see Fig. 2) upon a 1-D array of dis-
parity values for each scan-line. Working with a software 
serial algorithm, the optimal path on the DSI-plane  would 
be followed in any number of steps, from the last point 
backwards. Since the optimal path is not a straight line, N 
pixels of disparity would require in software more than N 
cycles of computation. However, an efficient hardware de-
sign would require strict timing specifications, computing in 
parallel all steps needed for the derivation of one pixel of 
disparity. In this way N disparity pixels for each N-pixel 
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scan-line would require exactly N steps into the hardware 
pipeline, during the second pass. Actually, the nature of the 
cost-plane allows us to consider that if the possible range of 
disparities is equal to D, then for the ith output disparity pixel 
in any scan-line, a maximum of D calculation steps need to 
be performed into the ith column of the DSI plane (see for 
example Fig. 7). In this sense, we need to establish hardware 
computation rules that can implement in parallel all possible 
D steps within each column. Such parallel computations in 
the ith column should output the total disparity change from 
the previous pixel (i-1)th, in one clock cycle.  
 Some computational hints towards the above challenges 
are given in the following.  

 
 

4. Design of a state machine for optimal path computations 
 

In this section a simple state-machine is proposed that allows 
the recursive  computation of the next cost-states from the 
previous ones, at least within a slice of the DSI plane. For 
this purpose the Disparity Space is calculated along the di-
agonal, as is shown in Fig. 3. Our preliminary results are 
based upon a seven-state machine that produces at each 
computation step a total of seven cost-states on both sides of 
the diagonal. This principle can be extended for more states, 
by increasing appropriately the computing elements. 

With reference to Fig. 3, it can be noted that starting 
from a known initial state it is possible to calculate all states 
on both sides of the diagonal and between an upper and 
lower limit, up to the end of the plane. This computation is 
performed at each step by setting as next initial state the one 
that was computed at the previous step. This feedback be-
tween the output and the input can produce an efficient 
mechanism that derives all states between given limits up to 
the end of the plane, with the same hardware stage. Since the 
DSI is based upon the left and right scan-line pixels, the 
state machine is designed in such a way that produces a new 
set of seven states with each input pixel pair. When both 
scan-lines have streamed through the pipeline, the state-
machine produces the final upper states of the cost plane.  
 

 
 

Fig. 3 Cost-function (DSI) plane along the diagonal 
   

  
The seven states, shown in Fig. 3 as coloured points, are 

produced in two phases since they are found in two different 
levels in the cost-grid. Three states are computed first and 
four states follow in the next step. If the states c30, c20, c21, 
c11, c12, c02, c03 are given as input, then by taking three states 
together, as in Fig. 4, the state-machine computes the mini-
mum cost of the transition to the states c31, c22, c13. At the 
same time it passes the already known states c30, c21, c12, c03 
to the computation of the second phase (Fig. 4). At the sec-
ond phase the remaining four states c41, c32, c23, c14 are com-
puted by using the three neighboring previous states. The 

calculation of the two limiting states of Fig. 4 (c41, c14) re-
quires two marginal costs (shown in Fig. 3 as green arrows) 
that cannot not be derived from the actual set of the seven 
current states, but can be estimated approximately. Namely, 
the marginal costs are approximated by adding two times the 
occlusion cost to the last state on the diagonal. For example, 
the cost of the path from c04 to c14 is considered to be 
c03+2xoccl. This approximation is used for all the vertical 
and horizontal paths adjacent to the diagonal. 

By setting as input the above seven states c41, c31, c32, 
c22, c23, c13, c14 we can produce in the following two steps the 
next seven states c52, c42, c43, c33, c34, c24, c25. The computa-
tion continues up to the point of maximum cost C(N,N). 

It can easily be shown that the computation of the cost-
plane can start at the known states c30, c20, c10, c00, c01, c02, c03 
with respective values 0.6, 0.4, 0.2, 0.0, 0.2, 0.4, 0.6. These 
values are derived from eqs. (2,3), with occlusion constant 
occl=0.2 and are always the same. Starting with these values 
the state machine is going to produce c30, c20, c21, c11, c12, c02, 
c03 etc.   

 
                            

 

Fig. 4 Initial state and successive derivation of next states with a seven-
state machine                 

 
   
Let it be noted here that starting from the triad c30, c20, 

c10 the three rival costs according to eq (5) are c30+0.2=0.8 
(where 0.2 stands for the occlusion constant), c20+s=0.4+s 
(where s stands for the cost of eq. (1) with s≥0) and 
c10+0.2=0.4. Obviously the minimum is 0.4 which stands for 
the state c20. Similarly from the triad c01, c02, c03  the state c02 
is derived. These are the launching steps of the proposed 
state machine.  

The pixels of both epipolar scan-lines are inserted into 
the state machine as a stream of pixel pairs (left-right), each 
pair occurring simultaneously. The intensities are 8-bit, 
grayscale and are buffered appropriately in order to produce 
in parallel all necessary costs sij, according to eq. (1). This is 
used in eq. (5) to calculate the cost of the diagonal path from 
(i-1, j-1) point in the DSI to point (i,j). With reference to Fig. 
3 the buffered intensities are I1(1), I1(2), I1(3), I1(4) and 
I2(1), I2(2), I2(3), I2(4), where I1 is the right scan-line in-
tensities and I2 are intensities on the left. In the parenthesis 
is the course of appearance of each pixel in the input stage. 
The cost of vertical and horizontal paths are computed by 
adding the occlusion constant to the previous value (see also 
Fig. 4).  

The cost of diagonal, vertical and horizontal paths to 
each point are taken together and the minimum value is pro-
duced by an appropriate parallel-computation stage. Tag 
values are attributed to all three possible paths. A tag “1” is 

c30 

c20 

c10 

c00 

c01 

c02 

c03

Initial next state

c30 

c20 

c21 

c11 

c12 
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c03
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attributed to the vertical path, tag “0” is for the diagonal 
path, while a tag value “-1” is attributed to the horizontal 
path. Wining tags at each point are stored and used during 
backtracking, according to rules measuring the change in the 
disparity value per pixel. 

 
 

5.  A numerical example 
 
Let us consider two random test scan-lines, with eight pixels 
per line, each pixel 8-bit grayscale. The two “images” are 
shown in Fig. 5.    
 
 
 
 
 
 
 
 
 

Fig. 5 Test scan-lines (8-bit, grayscale) 
 

The rules of Section 2 are used in order to produce the 
8x8 matrix of the cost function. The result is shown in Fig. 
6. Also, the proposed state-machine is used in order to pro-
duce the cost function along the diagonal. These results are 
shown in Fig. 6 with colored numbers and are the same with 
the results of eqs. (1-5) within computation error. Successive 
outputs of the state machine are shown in red and blue. Total 
alignment cost is 1.315, at point C(8,8). The respective ma-
trix according to the wining tag-values (denoting vertical, 
horizontal or diagonal paths as corresponding to minimum 
cost) is shown in Fig. 7. Only the slice computed by the state 
machine is shown. Since the machine always produces seven 
states, some values flow over the boundary towards the end.  
 

 
 
Fig. 6 Cost-plane produced with the scan-lines of Fig. 5. Red and blue 
results are successive outputs of the state-machine. 

 
 

6.  The backtracking stage 
 
The wining tag values produced recursively at each point of 
the cost function are stored in RAM memory, making use of 
on-chip RAM blocks existing today in most reconfigurable 
devices. For this particular test-design seven RAM blocks 
are needed with a depth of N bytes, where N represents the 
length of scan-line. RAM is written during the first pass and 
is read at the second pass, during the backtracking stage. 
Since scan-lines are streaming, a second set of RAM blocks 

is also needed where M-values are stored at second pass, 
while the first RAM set is read. 
 During backtracking, the stored tag sets are read in re-
verse order, seven values at a time. After several clock 
counts each set is rearranged by means of delay lines, in 
order to give the columns of Fig. 7. In this way, we now 
have “running columns” in the pipeline. Each column corre-
sponds to one pixel of disparity image, given that disparities 
are found with respect to the pixels of the left image. We 
begin backtracking at the top of the last column and apply a 
set of rules in order to find the entry point to the next run-
ning column, which is the first on the left, in Fig. 7. In short, 
the rule is that if entry in the i-th column is at the q-th mem-
ber of the column-set from top (1<q≤7) and is denoted en-
try=q, then the exit is at the first row to the bottom that does 
not contain “1”, that is exit is at the first “0” or “-1”. Let this 
be the p-th member of the set, measuring from top. In case 
of “0” the next column (i-1) is entered by moving diagonally 
down to the left. In this way we land again on the p-th mem-
ber of the next column-set, since the vertical set steps down 
as we move towards the beginning of the plane (see Fig. 7). 
Naming “exit” the entry point to the next running column, 
we denote exit=p. In case the i-th column is exited on “-1” at 
p, then we step horizontally and enter the (i-1) column at 
exit=p-1. For example, with respect to the sixth column of 
Fig. 7 (i=6), we suppose that we enter the column on the 4-
th member of the vertical set (q=4, entry=4). Since the M-
value of the 4-th member is “0”, we would immediately exit 
diagonally to enter the next left column on the 4-th member 
(p=4, exit =4). However, if we entered at the top of the sixth 
column, where we have the 2-nd member of the vertical set 
(entry=2), we would immediately step to the left on exit=1. 
Next, we would move to the fourth column diagonally on 
entry=1 and would continue to the third column (again 
exit=1) to land on M-value=“1”. Now, entry=1, but we 
should exit on p=2, diagonally to exit=2. The last step is 
diagonally to the left, again with exit=2.  

Yellow shadow and arrows in Fig. 7 indicate the path of 
minimum cost followed by backtracking. 

 

 

Fig. 7 Tag values (M-values), denoting horizontal, diagonal or vertical 
transition (-1,0,1, respectively) as corresponding to minimum cost. 
Green boundary corresponds to the 8x8 cost-plane. 7-member sets alter-
nate in blue and red colour. Numbering from 1 to 7 represents the order 
of a particular M-state in the column. Arrows and yellow shadow indi-
cate the path of minimum cost.    
 
 

The above rules follow from point c of the algorithm in 
Section 2. They are designed in hardware with a number of 
arallel stages that find “entry” and “exit” at each running 
column in one clock cycle. Knowing the entry point to the 

Image1: 
 
105  153   88   92  120   54  207  222 
 
Image2: 
 
 76  135  102  157  111   81   93  139  
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1.400 1.214 1.038 0.877 0.715 0.915 1.115 1.315

1.200 1.014 0.838 0.714 0.914 1.114 1.314 1.513

1.000 0.814 0.638 0.838 1.038 0.963 1.163 1.363

0.800 0.614 0.438 0.638 0.838 1.038 1.238 1.438

0.600 0.414 0.614 0.814 0.975 1.175 1.375 1.575
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current ith column and the exit point to the next (i-1) column, 
the total change of disparity at the ith pixel can be calculated: 

 
Δd=exit-entry.               (6) 
 
Starting with d=0, the system tracks disparities adding Δd at 
each step.  
 
 
7.  Hardware system and results 

 
The stages detailed above are integrated into a hardware 
system, shown in Fig. 8 as a block diagram. A model of the 
system was designed using Altera’s DSP Builder, which 
combines Simulink design tools with VHDL design flow. 
DSP-Builder contains bit- and cycle- accurate blocks which 
cover basic digital operations as well as complex functions 
[11].   

Great care has been taken in order to resolve timing is-
sues. Writing and reading RAM memory is a central part in 
the overall procedure and has to be clocked with detailed 
accuracy. In spite of such difficulties the design is feasible 
and can reproduce accurately the disparities calculated by a 
serial algorithm based on software.    

      

 
Fig. 8 Block diagram of the system parallel pipeline                         

 
Fig. 9 shows the results from the processing of the pair of 

scan-lines of Fig. 5. Two same scan-lines per image were 
used in order to check for timing consistency. It can be seen 
that both the software algorithm and the hardware model 
produce the same disparity values.     

Preliminary synthesis results show that the above design 
can fit in a commodity FPGA chip, like the medium scale 
Cyclone II manufactured by Altera Co. or the Xilinx Virtex 
II series.  Such devices are equipped with adequate on-chip 
storage capabilities that can accommodate the Random Ac-
cess Memory (RAM) detailed in the previous paragraphs. 
They also possess embedded multipliers that suffice for the 
arithmetic operations needed for the state machine presented 
in section 4.     

An advantage of the presented design is that images do 
not need to be stored in on-chip memory. Image scan-lines 
stream through the hardware pipeline and only a small part 
of them is buffered for the needs of the state-machine calcu-
lations. In this way memory requirements are limited to 
RAM needed for tag-storage. Almost any size of images can 
therefore be handled by the design. A large disparity-range 
is however demanding in resource usage, as it requires a 
more complex state machine, larger arrays for extracting the 
minimum costs and larger RAM for tag-storage. 

It should be taken into account that FPGA fixed-point 
architecture is demanding with respect to hardware resources 
when high calculation accuracy is required.  

The basic structure presented here is scalable and can ex-
pand to accommodate larger disparities. A state-machine 
able to produce approximately ten to sixteen states is thought 
to be adequate for real image applications.   

 

 
Fig. 9 (a) Disparity results from the model hardware design in Simulink. 
(b) Same scan-lines processed by a software serial algorithm.                
 
 
8. Conclusions   
 
This paper presents the basic principles for the design of a 
hardware system that can perform dense-depth calculations 
based on a two-pass dynamic-programming algorithm. A 
state-machine is proposed that can produce cost-states recur-
sively, along the diagonal of the DSI plane. RAM blocks are 
used to store tag values and hardware-friendly backtracking 
rules are established. Model-based design is used in order to 
evaluate the system performance for small disparities and for 
small scan-lines. The first results show that the system is 
functional and can produce small disparities correctly.  

Next steps in this project is to simulate the design for 
larger scan-lines and disparities and to use the resulting 
VHDL components in order to target a medium capacity 
FPGA chip. Some additional hardware design for I/O and 
system control is also needed. An efficient real-time hard-
ware stereo machine can be implemented based on the prin-
ciples presented above. Such an implementation can con-
tribute to an already established tradition of accelerating 
computationally demanding image processing tasks with 
reconfigurable hardware [12,13,14]. 
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