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Abstract 
 
The Hall effect is the generation of a transverse electromotive force in a sample carrying an electric current and exposed 
to perpendicular magnetic field. Depending on the sample geometry, this electromotive force may cause the appearance 
of a transverse voltage across the sample, or a current deflection in the sample. The generation of this transverse voltage, 
called Hall voltage, is the generally known way for the of the appearance of the Hall effect.  
 The resistance of this sample increasing under influence of the magnetic field, this called magnetoresistance 
effect. Both the Hall effect and the magnetoresistance effect belong to the more general class of phenomena called 
galvanomagnetic effects. Galvamomagnetic effects are the manifestations of charge transport phenomena in condensed 
matter in the presence of a magnetic field. 
 The sensor applications of Hall effect became important only with the development of semiconductor 
technology. For one thing, the Hall effect is only strong enough for this propose in some semiconductors. Therefore, the 
first Hall effect magnetic sensor became commercially available in the mid 1950s, a few year after the discovery of high-
mobility compound semiconductors. Our goal in this paper is to understand the physically background of the Hall and 
the magnetoresistance effects. We are going to discuss the effect of parameters in those phenomena and how we can 
make better our technology to improve better efficiency. 
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1.1 Approximate analysis of Hall effect 
 
In this section we will see the Hall effect. That give us an 
idea for the Hall effect and for magnetoconcetration effect 
and help us to understand much more about solid state 
physics. 
 To simplify the analysis, we also assume equilibrium 
carrier concentrations in samples, and thus neglect diffusion 
currents.  
 All galvanomagnetic effects come about as a 
manifestation of the action of the Lorentz force on quasi- 
free charge carriers in condensed matter. The Lorentz force 
is the force acting on a charged particle in a electromagnetic 
field. Moreover, the existence of the Lorentz force is 
fundamental indication of a very presence of an electric and 
/ or magnetic fields. It is give by 
 

)( BeEeF ×+= υ                   (1.1) 
 
 Here e denotes the particle charge (for electrons e=-q 
and for holes e=q where q is he magnitude of an electron 
charge) E is the electric field, υ is the carrier velocity and B  
the magnetic induction. The first term on the right hand side 
of (1.1) is often referred to as electrostatic force, and the 
second term as the Lorentz force. 

 In our analysis we use Smooth-drift approximation, this 
approximation consist of assumption that charge carriers 
move uniformly as a result of an electric field or other 
driving forces, the velocity of the movement being the same 
for all carriers and equal to the appropriate drift velocity. So 
we can replace the carrier velocity of each individual carrier, 
in υ (Equation (1.1)), by the average drift velocity of all 
carriers. We neglect completely the thermal motion of the 
carriers and the energy dissipation effect of scattering by a 
smooth friction. 
 
 
1.2  The (original) Hall effect 
 
We shall first study the Hall effect in the form in which 
Hall[1] discovered. Hall’s experimental device was a long 
gold leaf. We shall also consider a long flat sample; but in 
order to quickly come modern applications of Hall effect, we 
shall study it in semiconductor samples. 
 Let  us consider the transport of carriers in a long and 
thin semiconductor strips, such as those shown in figures 
1.1a and 1.1b.(Long strip means that the length of a strip l is 
much larger than w). 
 Suppose that in the strips, along the x direction, an 
external electric field  Εe(Ex,0,0) is established, and the 
magnetic field is zero. Then in the Lorentz force (Equation 
(1.1)) only the first term, witch is the electrical force exists. 
As we know the electrical force causes the drift of charge 
carriers. In the present case, charge carriers drift along the 
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strip in two opposite directions. The drift velocities are given 
by: 
 

epdp Eμυ =   ,                     (1.2) endn Eμυ =
 
where μp and  μn are the mobilities of holes and  electrons, 
respectively. The associated current densities are given by : 
 

epp EpqJ μ=   ,                   (1.3) enn EnqJ μ=
 
where p and n denote the hole and the electron density in p-
type and n-type strip, respectively. 
 
 
1.3  Hall electric field 
 
Let us now expose the current – carrying strip to a magnetic 
field. Let the magnetic induction B be collinear with the y-
axis(figure 1.1). Now on each charge carrier in the samples 
both parts of Lorentz force (Equation((1.1)) act. Since we 
assumed a uniform directional velocity of all carriers in the 
sample, the magnetic forces acting on a carriers are give by: 
 

][ BeF dpp ×= υ   ,                   (1.4) ][ BeF dpp ×= υ
 
 

 

Fig. 1.1: The Hall effect in a long plate of p-type (p) and n-type (n) 
material. Ee is the external electric field, B the magnetic induction, υd he 
drift velocity of carriers, F the magnetic force, J the current density and 
EH the Hall electric field. The magnetic forces press both positive and 
negative carriers towards the upper boundary of a strip. The Hall 
voltage appears between the charged edges of the strip. 
 
in the samples p and n respectively. These forces have the 
same direction in both strips : since e=q and e =-q for hols 
and electrons respectively, from equations(1.2) and (1.4) it 
follows that: 
 

][ BEqF epp ×= μ  ,  [EqF nn = μ   

 

]Be ×                (1.5)

For our particular geometry the magnetic forces are 

  ,   (1.6) 

 

These forces push carriers towards the upper edges of the 

.4  Hall voltage 

 more tangible effect with associated with Hall field is the 

dz

 
collinear with the z-axis: 
 

),0,0( yxpp BEqμ=F  ),0,0( yxnn BEqF μ=

 
strips. Consequently the carrier concentration at these upper 
edges of the strips start to increase, while the carrier 
concentration at the lower edges start to decrease.  
 
 
1
 
A
appearance of transverse voltage between the edges of a 
strip. This voltage is known as Hall voltage. Let us choose 
two points M and N at the opposite edges of the strip, under 
the condition that both points lie in the same equipotential 
plane when B=0(figure 1.1). Then the Hall voltage is given 
by 
 

N

H H
M

V E= ∫                    (1.9) 

 
nd    

w

a
 

Hp p x yE BV     , w   Hn n x yV E Bμ=  μ=              (1.10) 

 
r our p-type and n-type strips, respectively. Here the 

.5  Hall angle 

 the presence of a magnetic field, the total electric field in 

fo
negative sign has been omitted and w denotes the width of 
the strips. The generation of the transverse Hall electric field 
and the associated Hall Voltage under the experimental 
conditions similar to that shown in figure 1.1 are usually 
referred to as the Hall effect. However, there is another, 
more fundamental feature of the Hall effect: the Hall angle. 
 
 
1
 
In
the sample E=Ee+EH is not collinear with the external 
electric field Ee. In the present case the current in the sample 
is confined to the direction of the external electric field, and 
the current density is collinear with the external electric field 
(figure 1.1). Hence the total electric field is not collinear 
with the current density either. Therefore, the Hall effect in a 
long sample shows up through the tilting of the total electric 
field relative to the external electric field and the current 
density in the sample. With the aid of figure 1.2, the 
magnitude of the Hall angle is given by 

tan
e

Η
Η

Ε
Θ =                  (1.11) 

Ε

 

Fig. 1.2 The vector diagrams of electric fields and current densities in 

H

long samples: (p), in a p-type material; (n), in n-type material J is the 
current density, Ee the external electric field, EH the Hall electric field, 
E the total electric field and Θ   the Hall angle. 
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e clear later, it is 
n

y

 
 For the reason which will becom
co venient to measure the Hall angle with respect to the 
direction of the total electric field, as shown in figure 1.2. 
Then we may define the Hall angle as the angle of 
inclination of the current density J with respect to the total 
electric field E. According to this definition and (1.11), we 
obtain for the two particular cases from figures 1.1 and 1.2 
 

nta p p BμΗΘ =   ,  tan n nBμ yΗΘ = −              (1.12) 

 
p-type and n-type semiconductor strip, respectively. 

.6  Hall coefficient 

and (1.8) we can find the relationship 

 For 
The value of the Hall angle depends only on the applied 
magnetic induction  and the mobility of the charge carriers. 
The sign of the Hall angle coincides with the sign of the 
charge carriers. 
 
 
1
 
From equations (1.3) 
between the current density and the Hall field:  
 

1 [ ]Hp qp
= − ×   ,  E J B   

1 [ ]HnE J B
qn

= ×          (1.13) 

 
s can be rewritten as 

              (1.14) 
 

RH is a parameter called the Hall coefficient. Equation 
 a

The equation
 

[ ]J B= − ×H H   E R

where 
(1.14) is  modern representation of the conclusions made by 
Hall after his experimental findings. 
 The Hall coefficient is a material parameter that 
characterizes the intensity and the sign of the Hall effect in a 
particular material. The unit of the Hall coefficient is VmA-

1T-1 , which is sometimes expressed in a more compact form 
as ΩmT-1 or, equivalently, m-3C-1. 
 From a comparison of equations (1.13) and (1.14), we 
can find the Hall coefficients of strongly extrinsic 
semiconductors  
 

1
Hp qp
=    , R   

1
HnR

qn
=                 (1.15) 

 
p-type and n-type, respectively. The sign of the Hall for 

coefficient coincides with the sign of the majority carriers, 
and the magnitude of the Hall coefficient is inversely 
proportional to the majority carriers concentration. In the 
practical applications of the Hall effect it is convenient to 
operate with pure macroscopic and integral quantities 
characterizing a Hall device. To this end, for a long Hall 
device we obtain from equations (1.11) and (3.14) the Hall 
voltage : 
 

H H
IBV R
t
⊥=                  (1.16) 

 
 t is the thickness of the strip, I is the device current 

the component of the magnetic 

gn. 

 

 very short Hall plate. A 
ent is called short if its 

induction perpendicular to the device plane. We omit the 
negative si
 Equation (1.16) shows why a plate is a preferential shape 
of the Hall device with voltage output : for a given biasing 
current and ma

 Here
given by  I Jwt=

gnetic induction, the thinner the sample, the 
higher the resulting Hall voltage. 
       
  
1.7 The current deflaction effect
 
Consider now the Hall effect in a
ample for a Hall effect experims

dimension in the current direction is much smaller than that 
in the direction of the magnetic force acting on carriers. As 
example of a short sample is the short strip shown in figure 
1.3. the basic shape of this device, its position relative to the 
coordinate system, and the notation are the same as in case 
of the long strips in figure 1.3. Now, however, the strip is 
short ,l<<w, and it is laterally sandwiched between two large 
current contacts. In such short samples the Hall effect takes a 
form which is sometimes called current deflection effect. 
 

 

  Fig. 1.3 A short Hall plate. The distance between the current contacts 
is smaller than the distance between the insulating boundaries (ib) The 
picture was taken from P.S Popović “ Hall Effect Devices (Sensor 

d the current density in a short sample. We 
al

. (

Series) Swiss Federal Institute of Technology Lausanne (E.P.F.L) 2nd 
Edition IoP 2004) 
 
 Let us now find a quantitative relationship between the 
electric field an
sh l again use the approximation which we introduced 
above: we neglect the thermal motion of the carriers, and 
assume that carriers move uniformly under the action of the 
Lorentz force.  
 

[ ]pF qE q Bυ p= + ×

 and B⊥

  , [ ]n nF qE q Bυ= − − ×  (1.17) 

for holes and electrons, ctively. The densities
 

 respe  of the 
carriers are: 
 

( ) (0) [ ( ) ]pJ B J J B Bμp p p= + ×    

( ) (0) [ ( ) ]p p p pJ B J J B Bμ= + ×             (1.18) 

 
 Here Jp(B) and Jn(B) are the hole and el
ensities respectively in the presence of the magnetic 
duction B.  

  

ectron current 
d
in
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( )p p p p p pJ B q pE pF qpμ μ υ= = =  

         

( )n n n n nJ B q nE nF qn nμ μ υ= = = −              (1.19) 

 And Jp(0) and Jn(0)  are the drift current densities due to 
the electric field E when B=0:  

E               (1.20) 

 Equations (1.17),(1.18) and (1.20) are 
represented in figu  1.4. In  short s ple, a 
eflects the current from its usual way along the electrical 

 

 

 (0)p pJ q pEμ=       

(0)n nJ q nμ=  
 

graphically 
re  a am magnetic field 

d
field. Moreover using the diagrams in figure 1.4, we find  
 
tan Hp pBμ ⊥Θ =   ,   tan Hn nBμ ⊥Θ = −               (1.21) 

 
 
  

 

Fig. 1.4 The graphical representation of the vector equations 
(1.17),(1.18) and (1.20) that hold in a short Hall plates: (p) of a p-type
semiconductor ; (n) of a n-type semiconductor.(The picture was taken

By inspecting the diagrams in figure 1.4, we notice that the 
ller than J(0). This means 

at in short Hall Plates a magnetic field also has additional 

agnetic field. 

 can solve this equation and for 

 
 

from P.S Popović “ Hall Effect Devices (Sensor Series) Swiss Federal 
Institute of Technology Lausanne (E.P.F.L) 2nd Edition IoP 2004) 
  

2. The magnetoresistance effect 
 

current density vector J(B) are sma
th
effect: it causes a reduction in current density. 
 This current deflection is illustrated in figure 1.5. As 
sown in figure 1.5(a), current density in presence of a 
magnetic field is smaller than that with no m
The attenuation in the current density is a consequence of 
the current deflection effect: the deflected current lines 
between the sample contacts are longer (see figure 1.5(a)). 
The longer current path means also greater effective 
resistance of the sample. 
 To find how much the current density decrease due to a 
magnetic induction, we have to solve the equation (1.18) 
with respect to J(B). We

perpendicular magnetic field, such that 0E B⋅ = , the 
solutions of the equations (1.18) are 
 

  

Fig. 1.5 The current lines deflection effect in a short Hall plate, biased 
by a constant voltage (a) and a constant current (b). The broken lines ar
the current lines at B=0, whereas the full lines are the current lines  

e 
 at

0B ≠ . 
 

( ) [ ]p pB pB pJ B E E Bσ σ μ= + ×  

( ) [ ]n nB nB nJ B E E Bσ σ μ= − ×              (1.22) 
 
where      
 

 

0
2[1 ( ) ]

p
pB

σ
σ =

+ pBμ
  and  0

2[1 ( ) ]
n

nB
nB

σσ
μ

=
+

  (1.23)      

are the effective co ities of p-type and
materials in the presence of the magnetic induction 

p0 and σn0 are the conductivities at B=0. Note that, at a given 

 
nductiv  n-type 

B and, 
σ
electric field, the coefficients σΒ  determine the longitudinal 
current density in a infinitely short sample. Since a 
materialization of the infinitely short sample is Corbino[2] 
disc, we shall call the conductivity the coefficients σΒ the 
Corbino conductivity.  
 The first term on the right-hand side of equation (1.22) 
represent the lateral current densities. The integral of this 
current density over the contact surface is the device current. 

roF m equations (1.22) and (1.23) we deduce that the device 
current decreases as the magnetic field, increases. Therefore, 
if a sample exposed in magnetic field, everything happens as 
if the conductivity of the sample material were decreased. 
The corresponding relative increase in the effective material 
resistivity is given by 
 

 0 2

0

( )pB p
p

p

B
ρ ρ

μ
ρ
−

=  

20

0

( )nB n
n

n

Bρ ρ μ
ρ
−

=                (1.24) 

 
 The increase in a m sistivity under
of a magnetic field is ca e magnetoresista
articular, the just described increase in resistivity due to the 

aterial re  the influence 
lled th nce effect. In 

p
current deflection effect in a short samples is called the 
geometrical magnetoresistance effect. The attribute “ 
geometrical “ reflects the fact that the effect is related to the 
geometry of the current lines, as illustrated in figure 1.5. 
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p to now, in order to simplify our analysis, we have always 
sumed that our sample is plate-like, and that the magnetic 

rop now this 
sumption and consider a general case. We only assume 

here  and σ is the material conductivity 
at B=0  and  μ  is the mobility of the carriers. The total 

alvanomagnetic current density (figure 1.6) generally 
e component

2.1 Galvanomagnetic current components    
 
U
as
field was perpendicular to the plate. Let us d
as
that the vectors of electric field and magnetic induction have 
an angle and we seek the current density vector. 
 The basic equations relating the resulting current density 
J(E,B) with the electric field E and the magnetic induction B 
are given by 
 

( ) [ ( ) ]J B E J B Bσ μ= + ×               (1.25) 
 

w  ( , ) ( )J E B J B≡

g
consists of thre s : 

 

1 2 3J J J J= + +              (1.25a) 
 

 

Fig. 1.6 The current density components arising in the presence of an 
electric field E and the magnetic induction B. The coordinate system is 
so chosen so that E is collinear with the x axis and B lies in the xz 
plane. The E and B vectors are not mutually orthogonal. The total 
current density is the sum J=J1+ J2 + J3 . J1 is collinear with E, J2 is 
collinear with [ExB] (witch is here collinear with the y axis), and J3  is 
collinear with B. Note that we tacitly assume positive charge carriers. In 
the case of negative charge carriers, the component J2 being 
proportional to the mobility, would have an inversed direction (along 
the +y axis). (The picture was taken from P.S Popović “ Hall Effect 
Devices (Sensor Series) Swiss Federal Institute of Technology Lausanne 
(E.P.F.L) 2nd Edition IoP 2004) 
 
and specially we can write  
 

1 2 2( )
1 B

J Eσ
μ+

=  

2 2 2( ) [
1

J E
B

]Bσ μ
μ

= ×
+

 

2
3 2 2( ) [

1
J B

B
]E Bσ μ

μ
= ⋅

+
              (1.26) 

 
And finally the total galvanomagnetic current density is: 
 

)2 2 2(1 ) [ ] (J E B E B B Eσ μ μσ μ σ− + × + ⋅B  (1.27) 

 
 

. Geometrical factors 

et us have a look at the distribution of the current density 
nd the electrical potential in a “realistic“ galvanomagnetic 
mple. Figure 1.7, shows such a two terminal rectangular 

re between “ very long “ and “ very 
ort “. By inspecting the current and the equipotential lines, 

   

 
 
 

3
 
L
a
sa
plate, which is somewhe
sh
we notice the following. Near the two isolating boundaries, 
current is forced to flow along the boundaries and the 
equipotential lines are strongly inclined: a Hall electric field 
is generated.  
 The device such us assumed have intermediate 
geometry. Then a factor to related from geometry can be 
calculated. It is really that the Hall voltage of the Hall plate 
with an arbitrary shape can de expressed as   

H
H

H

VG
V ∞

=                  (1.28) 

 
 Where GH is a parameter called the geometrical 
correction fa or of a Hall voltage, and ct HV ∞  denotes the 
Hall voltage in a corresponding long strip.  

The Hall geometrical factor is a number limited by 0< 

ce

 
GH<1. For a long Hall device GH=1; for the very short Hall 
device GH=0. Similarly, for the resistan  of the device 
exposed to a magnetic field we may write: 
 

( )
( )R

R BG
R B∞

=                 (1.29) 

 
 Where GH is a parameter called the geometrical factor of 
magnetoresistance, R(B) is the resistance of a considered 
magnetoresistor at an induction B, and ( )R B∞ denotes the 
resistance of a corresponding part of an infinitely long strip. 

enerally, any piece of electrically conductive material, 
tted with four electrical contacts, could be used as a Hall 

venient 
tical applications, a Hall device should preferably 

e made in the form of a plate. The contacts should be 

g ohmic offset we use, an elegant method that 
xploits a property of the Hall-effect transducer to reduce 
stem offset. A four-way symmetric Hall-effect transducer 

 
 
3.1 Common shapes of a Hall plates and magneto-
resistors 
 
G
fi
device. However, to be reasonably efficient and con
for a prac
b
positioned at the boundary of the plate, far away from each 
other. The two contacts for sensing the Hall voltage should 
be placed so as to attain approximately equal potentials at a 
zero magnetic field. Then the potential difference at the 
sense contacts equals to Hall Voltage.  The common 
potential at the sensing contacts should roughly equal the 
mid-potential of the current contacts. Then the largest Hall 
voltage can me measured. To simplify the design and 
fabrication of a Hall plate a highly symmetrical shape and a 
uniform material and thickness of the plate are usual chosen. 
Some commonly used shapes of Hall plates are shown in 
figure 1.7. 
 
 
3.2. Reducing offset voltage and 1/f noise 
 
To removin
e
sy
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ic offsets can be 
presented as a small ∆R, as shown in figure 1.8a. When 

mer 

can be viewed as a Wheatstone bridge. Ohm
re
bias current is applied to the drive terminals, the output 
voltage appearing at the sense terminals is VH + VE, where 
VH  is the Hall voltage and VE is the offset error voltage. 
 Now consider what happens if we take the transducer 
and reconnect the bias and sense terminals, as shown in 
figure 1.8b. All of the terminal functions have been rotated 
clockwise by 90°(“Spinning Current technique”). The sense 
terminals are now connected to bias voltage, and the for
drive terminals are now used as outputs. Because the 
transducer is symmetric with rotation, we should expect to 
see, and do see, the same Hall output voltage. 
 

 

Fig. 1.7 Various shapes of Hall plates. Current contacts are denoted by 
C, sense contacts by S, and C/S indicates that the current and sense are 
interchangeable    
 
 The transducer, however, is not symmetric with respect 

ng in a polarity inversion of the ohmic offset 
oltage. The total output voltage is now V  – V . One way to 

to the location of ∆R. In effect, this resistor has moved from 
the lower right leg of the Wheatstone bridge to the upper 
right leg, resulti
v H E
visualize this effect is to see the Hall voltage as rotating in 
the same direction as the rotation in the bias current, while 
the ohmic offset rotates in the opposite direction. If one were 
to take these two measurements to obtain VH + VE and VH –
VE, one can then simply average them to obtain the true 
value of VH. For this technique to work, the only requirement 
on the Hall-effect transducer is that it be symmetric with 
respect to rotation. It is possible to build a circuit that is able 
to perform this “plate-switching” function automatically.  
  

 

Fig. 1.8  Effects of rotating bias and sense terminals on output. (The 
picture was taken from Edward Ramsden “Hall Effect Sensors : Theory 
and Application” 2006) 
 
 Imagine that the 1/f noise (flicker) at the output terminals 
of a Hall device as a fluctuating offset voltage. Then we can 

ugh so that the fluctuating voltage does 

we design and we are ready to 
eveloped a novel Hall sensor device which uses elaborate 

b. The current enters the device, as presented in the 

 
(a) (b) 

 
Fig. 1.9 The novel 3D Hall device that we call “3D Wheel Hall Senor” 
or 3DWHS. (a) The even phase (PHASE-P) ; (b) the odd phase 
(PHASE-N). 

 xploits the signal ll voltage, 
all current, and geometric MR effect. As a result the device 

r high-speed spinning, given that the voltage 

 
 
         (a)                (b) 

Fig. 1.10  The novel 3D Hall device that we call “3D Wheel Hall 
Senor” or 3DWHS. (a) The electric field and the equpotential lines in 
the even phase (PHASE-P) ; (b) The electric field and the equipotential 

ase (PHASE-N). 

model 1/f noise source by a fluctuating asymmetry 
resistance ΔR in figure 1.8. If the biasing current of a Hall 
evice spins fast enod

not change essentially during one circle, then the system 
shall not “see” the difference between the static and the 
fluctuating offset and shall cancel both of them. In order to 
completely eliminate the 1/f noise of a Hall device, we have 
to set the spinning current frequency well above the 1/f noise 
corner frequency. For a very small device, this may be a 
very high frequency.      
 
 
4. Our suggestion for a novel shape Hall device : The 3D-
WHS 
 

he lasts few months T
d
spinning current technique. The novel 3D Hall device that 
we call “3D Wheel Hall Senor” is presented in figures 1.9a 
nd 1.9a

aforementioned figures, in two phases namely the even 
phase (PHASE-P) and the odd phase (PHASE-N). 
 
 

The device e s attributed to Ha
H
is equivalent to an “ideal” voltage or current Hall sensor 
with geometrical factor of one (GH = 1). Moreover it 
provides fo
distribution changes moderately between different phases. 
This is equivalent to minimum charge injection that 0 in turn 
– allows spinning frequency increase. The device senses all 
3 filed dimensions, namely the flux-density of BZ is 
proportional to the DC component of the output signal, 
whereas the BX and BY components are proportional to the 
first harmonic of the output signal. Finally the device can be 
made in a way to reuse the current, if integrated in a 
BiCMOS technology providing for matched JFETs.  
 

lines in the odd ph
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We s  MatLab environ lectric field 

d 1.10b.  
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