
56

Research Article

Application of Soft Computing for the Prediction of Warpage of Plastic Injection 
Molded Parts

 B. Sidda Reddy 1,*, J. Suresh Kumar2, Vijaya Kumar Reddy2 and G. Padmanabhan3

1 Department of Mechanical Engineering, R. G. M. College of Engineering & Technology, 
Nandyal, Kurnool (Dt), A.P-518 501, India. 

2 Mechanical Engineering, J.N.T University, Hyderabad, India.
3 Mechanical Engineering, S.V. University College of Engineering, S.V. University, Tirupati, A.P. India.

Received 4 October 2008; Accepted 15 June 2009

Abstract

This paper deals with the development of accurate warpage prediction model for plastic injection molded parts using soft 
computing tools namely, artificial neural networks and support vector machines. For training, validating and testing of the 
warpage model, a number of MoldFlow (FE) analyses have been carried out using Taguchi’s orthogonal array in the design 
of experimental technique by considering the process parameters such as mold temperature, melt temperature, packing pres-
sure, packing time and cooling time. The warpage values were found by analyses which were done by MoldFlow Plastic 
Insight (MPI) 5.0 software. The artificial neural network model and support vector machine regression model have been 
developed using conjugate gradient learning algorithm and ANOVA kernel function respectively. The adequacy of the de-
veloped models is verified by using coefficient of determination. To judge the ability and efficiency of the models to predict 
the warpage values absolute relative error has been used. The finite element results show, artificial neural network model 
predicts with high accuracy compared with support vector machine model. 
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Plastic materials are commonly used in every area of the industry. 
The most important reason for this is the material properties of 
the plastics. Some of these properties are lightness, resistance to 
corrosion, ease to give shape. The most important is their physi-
cal and chemical properties can be changed as desired. Plastic 
materials can be used in packaging, aerospace, aviation, building 
and construction, automotive, agriculture, irrigation, sanitation, 
electrical conduits, and chemical processing plants etc. Plastic In-
jection Molding (PIM) is considered the most prominent process 
for mass producing plastic parts. More than one third of all plas-
tic products are made by injection molding, and over half of the 
world’s polymer processing equipment is used for the injection 
molding process. Plastic injection molding is one of the manu-
facturing processes carried out by a consecutive five phases with 
plastication, injection, packing, cooling and ejection. This proc-
ess is complex but highly efficient means of producing a wide 
variety of three dimensional thermoplastic parts in a large volume 
of production. During production, quality problems of the plastic 
parts such as warpage, shrinkage, weld and meld lines, flow mark, 
flash, sink mark and void are affected from manufacturing proc-

ess conditions which include the melt temperature, mold tempera-
ture, injection pressure, injection velocity, injection time, pack-
ing pressure, packing time, cooling time, cooling temperature etc. 
One of the most important quality problems is warpage. Warpage, 
is a distortion of the shape of the final injection-molded item, is 
caused by differential shrinkage; that is, if one area or direction of 
the article undergoes a different degree of shrinkage than another 
area or direction, the part will warp.

During plastication, injection, packing, cooling and ejection 
processes, the residual stress is produced due to high pressure, 
temperature change, and relaxation of polymer chains, resulting 
in warpage of the part. In order to yield a product with high pre-
cision, optimum mold geometry and processing parameters must 
be found. To reduce the cost and time at the design stage, it is 
important to simulate warpage of the injection molded part. In 
this study, the warpage values were found by analyses which were 
done by a computer aided engineering software MoldFlow Plastic 
Insight (MPI) 5.0. A predictive model for warpage in terms of the 
process parameters is then developed by artificial neural networks 
(ANN) and support vector machines (SVM). The developed mod-
el is validated and tested with some of the FE results, which were 
not used for developing the model.     *  E-mail address: sidhareddy548@gmail.com 
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2. Literature Review

In the past, Jacques [1] analyzed thermal warpage in injection 
molded flat parts due to unbalanced cooling. Akay and Ozden [2] 
measured thermal residual stresses and distortions of injection 
molded parts and analyzed the effects of temperature gradients. 
Liu [3] simulated and predicted the residual stress and warpage 
using a viscoelastic phase transformation model, which assumed 
the solidified polymer to be a linear solid and the polymer melt to 
be a viscous fluid. Bushko and Stokes [4-5] used the solidifica-
tion of a molten layer of amorphous thermoplastic between cooled 
parallel plates to model the mechanics of part shrinkage, warpage 
and the build-up of residual stresses during the injection mold-
ing process, assuming thermoviscoelastic behavior of the mate-
rial. Kabanemi et al. [6-7] simulated residual stresses and residual 
deformations using three-dimensional finite element method for a 
thermo-viscoelastic model and applied it to a complex shape. Mat-
suoka et al. [8] developed an injection molding analysis program 
considering mold cooling and polymer filling-packing-cooling to 
predict warpage. Hastenberg et al. [9] measured the residual stress 
distributions in injection molded flat plates using a modified layer-
removal method. Jansen et al. [10] systematically studied the ef-
fect of processing conditions such as holding pressure, injection 
velocity, and mold and melt temperatures on shrinkage. Jansen 
and Titomanlio [11-12] calculated residual stresses and shrinkage 
of thin products using an elastic model to study the effect of in-
mold shrinkage on the final product dimensions and measured the 
shrinkage under various molding conditions. Choi and Yong-Taek 
[13] analyzed for shrinkage and warpage using a linear elastic 
three dimensional finite element method. 

In the present investigation, the plastic elbow part has been 
chosen for the prediction of warpage. A predictive model for warp-
age in terms of the process parameters such as mold temperature, 
melt temperature, packing pressure, packing time and cooling 
time is then developed using artificial neural networks and sup-
port vector machines. The developed model is validated and tested 
with some of the FE results, which were not used for developing 
the model. ANN and SVM predicted results are in good agreement 
with finite element results of warpge. The finite element results 
show, artificial neural network model predicts with high accuracy 
compared with support vector machine model. 

3. Experimental Details 

The Taguchi’s orthogonal array has been implemented for warp-
age analyses by considering the process parameters such as mold 
temperature, melt temperature, packing pressure, packing time 
and cooling time. The simulation model of elbow plastic part with 
mesh geometry and injection location, shown in Fig.1 was created. 
The geometry of this elbow plastic part was discretized using fu-
sion mesh by MoldFlow, which is commercial software based on 
hybrid finite element method for solving pressure, flow and tem-
perature fields. The part is made of Indothene 24-MA-040. The 
Shrinkage of this material is of the order of  0.02 - 0.05 mm/mm (2 
- 5%) when density is between 0.91 - 0.925 g/cm3. When density is 
between 0.926 -.04 g/cm3, the shrinkage is of the order of 1.5 - 4%. 
Actual shrinkage values are dependent on the molding conditions.

Finite Element analyses of the elbow part are performed 
using commercial software MoldFlow Plastic Insight 5.0 for the 
combination of process parameters shown in Table 1. The combi-
nation of process parameters generated by three-level Taguchi’s 
orthogonal array [14]. Finite Element analyses have been carried 
out for the manufacturing parameters presented in Table 2. The 
analyses have been carried out on a Genuine Intel x86 Family 6 
Model 14 Stepping 12 ~17 processor PC. The warpage values of 
36 experiments, for the combination of process parameters are 
shown in Fig.2.

Figure 1. Elbow part with mesh geometry and injection location

Table 1. Process parameters and their levels

Table 2. Manufacturing parameters employed in Moldflow analysis

Figure 2. Finite Element results of warpage of 36 Experiments

Control parameter Units Levels
Level 1 Level 2 Level 3

Mold Temperature (M OT) 0C 40 50 60
Melt Temperature (MET) 0C 175 190 205
Packing Pressure (PP) MPa 90 110 130
Packing Time (PT) sec 2 4 6
Cooling Time (CT) sec 20 25 30

Injection time 1.287 s
Injection pressure 90 MPa
Cooling channel diameter 10 mm
Between cooling channels center distance 55 mm
Between cooling channel’s 
Center-parting surface distance 25 mm
Upper inlet water temperature 40 0C
Lower inlet water temperature 14 0C
Number of gate 4
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4. Modeling of Plastic Injection Molding Process

4.1. Artificial neural network model for warpage

The use of artificial neural networks (ANN) has been well ac-
cepted in the areas of telecommunication, signal processing, pat-
tern recognition, prediction, process control and financial analysis 
[15]. An ANN is an information processing system that behaves 
similarly to a biological neural network. It is made up of highly 
processing units called neurons that are classified into three layers: 
input layer, hidden layer, and output layer. Each of these neurons 
applies an activation function to the net input signal. Information 
is transferred from one neuron to another by connection links. 
Each connection link applies an associated multiplier, called a 
weight. A bias, another weight, is added to the sum of all products 
pertaining to the incoming links. Determination of these weights 
called training is the most significant task. 

 (1)

Where netj is the total or net input and N is the number of 
inputs to the jth neuron in the hidden layer. Wij is the weight of the 
connection from the ith neuron in the forward layer to the jth neuron 
in the hidden layer. A neuron in the network produces its output 
(Out j) by processing the net input through an activation (Transfer) 
function f, such as logistic function as given as follows.

   
  (2)

The neural network architecture 5-12-10-1 was used in this 
study is shown in Fig 3. It was designed using NeuroIntelligence 
software [16]. The network consists of one input, two hidden and 
one out put layer. Hidden layer one, has twelve neurons and sec-
ond hidden layer has ten neurons, where as the input and output 
layers have five and one neuron respectively. Since warpage pre-
diction in terms of mold temperature, melt temperature packing 
pressure, packing time and cooling time was the main interest in 
this research, neurons in the input layer corresponding to the mold 
temperature, melt temperature packing pressure, packing time and 
cooling time, the output layer corresponds to warpage.

4.1.1. Generation of Train, Validation and Test Data

To calculate the connection weights, a set of desired network out-
put values are needed. Desired output values are called the train-
ing data set. Training data set is a part of input data set used for 
neural network training, i.e. to adjust network weights for maxi-
mizing predictive ability and minimizing forecasting error. In this 
study, 26, 5 and 5 finite element results of warpage data were used 
as training, validating and testing of the network respectively and 
given in Table 3, Table 4 and Table 5.

4.1.2. Network Training

Calculation of weights and biases to the variables is called net-

work training. The training phase of a back - propagation network 
is an unconstrained nonlinear optimization problem. The goal of 
the training is to search an optimal set of connection weights in 
the manner that the errors of the network output can be minimized. 
There are several algorithms that can be used to determine the 
weights and biases for the network. Besides popular steepest de-
scent algorithm, conjugate gradient algorithm is another search 
method that can be used to minimize network output error in 
conjugate directions. The Conjugate Gradient Method is the most 
prominent iterative method for solving sparse systems of linear 
equations. This is an advanced method for training multi-layer 
neural networks. The conjugate gradient method can be used to 
minimize any continuous function f(x) for which the gradient f´ 
can be computed. Conjugate gradient method uses orthogonal 
and linearly independent non-zero vectors. In this application the 
weights and biases are determined and updated using conjugate 
gradient descent method. The applications include a variety of ap-
plication problems, such as engineering design, neural net train-
ing, and non linear regression. The conjugate gradient method 
is updated until convergence takes place i.e. minimize the mean 
square error (MSE) between the network prediction and training 
data set. The out line of the non-linear conjugate gradient method 
is given below. 

Find λ (t) that minimizes E (             )

(3)

 (4)

Where λ (t) is the exact step to the minimum of E (             ) 
along the direction of d (t) and β (t) is the step size to decide d (t+1). 
All of the conjugate gradient algorithms start out by searching in 
the steepest descent direction (negative of the gradient) on the first 
iteration.
d0 = -g0

A line search is then performed to determine the optimal dis-
tance to move along the current search direction using equation (3).

The conjugate gradient method automatically selects an ap-
propriate learning rate η (t) and momentum factor α (t) in each 
epoch.

η(t)= λ(t) ; α(t)=  λ(t) β(t) 

Figure 3. Neural network architecture designed
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To judge the ability and efficiency of the models to predict 
the warpage values network error, absolute error and absolute rel-
ative error has been used. The difference between the actual value 
of the target column and the corresponding network output. The 
difference will be displayed in absolute values and in percentage 
terms. Absolute relative error is an error value that indicates the 
“quality” of the neural network training. This index is calculated 
by dividing the difference between actual and desired output val-
ues by the module of the desired output value. The smaller the 
network error is, the better the network had been trained.

The Network error, absolute error and absolute relative er-
ror obtained after training of the network with 50,000 epochs 
and multiple training (three times) is 0.004114, 0.056707 and 
2.413125% respectively. The R2 value was found to be 96.098% 
which shows the correlation that is exists between the experimen-
tal and predicted values, i.e. how well the network outputs actual 
target values and also the training standard deviation was found 
to be 0.00006. It is an expected deviation of values from a math-
ematic expectancy.

4.1.3. Neural Network validation and Testing

Once the weights are adjusted the performance of the trained 
network was validated and tested for the finite element results pre-
sented in Table 4 and Table 5 of warpage data which was never 
used in the training process. Validation set is a part of the data 
used to tune the network topology or network parameters other 
than weights. It is used to define the number of hidden units of 
to detect the moment when predictive ability of neural network 
started to deteriorate. Test set is a part of the input data set used 
only to test how well the neural network will forecast on new data. 
Test data set is used after network is ready (trained), to test what 
errors will occur during future forecasting. This set is not used 
during training and thus can be considered as though it consists of 
the new data entered by user for forecasting. The results predicted 
by the network for training, validating and testing were compared 
with the finite element analysis results presented in Table 6, Table 
7 and Table 8. The absolute relative error, standard deviation for 
validating and testing data was found to be 3.020207%, 0.000335, 
4.423789%, and 0.006641 respectively. The R2 value was found 
to be 95.95% for validation data and 93.4058% for test data. Fig 4 
shows the absolute error for training, validation data.

4.2. Support Vector Machine model for warpage

The Support Vector algorithm is a nonlinear generalization of the 
generalized Portrait algorithm developed in Russia in the sixties. 
As such, it is firmly grounded in the framework of statistical learn-
ing theory, or VC theory, which has been developed over the last 
three decades by Vapnik and Chervonenkis [1974], Vapnik [1982, 
1995]. In a nutshell, VC theory characterizes properties of learning 
machines which enable them to generalize well to unseen data.

Support Vector Machines (SVM) are very specific class of 
algorithms, characterized by usage of kernels, absence of local 

MOT MET PP PT CT  Warpage (mm)
40 175 90 2 20 1.956
40 175 90 2 25 1.950
40 190 110 4 25 1.501
40 190 110 4 30 1.680
40 205 130 6 20 1.160
40 205 130 6 25 1.181
40 205 130 6 30 1.179
50 175 110 6 30 1.084
50 190 130 2 20 2.462
50 190 130 2 25 1.985
50 190 130 2 30 2.052
50 205 90 4 20 1.897
50 205 90 4 30 1.897
60 175 130 4 25 1.632
60 175 130 4 30 1.589
60 190 90 6 20 1.203
60 190 90 6 25 1.229
60 190 90 6 30 1.262
60 205 110 2 20 2.375
40 175 110 4 25 1.360
40 190 90 2 30 2.410
50 175 110 2 25 2.262
50 190 110 4 25 1.696
50 205 110 6 30 1.251
60 175 90 2 25 2.096
60 205 90 6 25 1.497

MOT MET PP PT CT  Warpage (mm)
40 175 90 2 30 2.084
50 175 110 6 20 1.086
60 175 130 4 20 1.589
60 205 110 2 30 2.222
60 190 110 4 25 1.929

Table 3. Data set used in creating ANN and SVM model

Table 4. Data set used for validating ANN and SVM model

MOT MET PP PT CT  Warpage (mm)
40 190 110 4 20 1.510
50 175 110 6 25 1.085
40 190 110 4 30 1.680
60 205 110 2 25 2.352
40 205 110 4 25 1.652

Table 5. Data set used for testing ANN and SVM model

Figure 4. Absolute error for training and validation set

B. Sidda Reddy, J. Suresh Kumar, Vijaya Kumar Reddy and G. Padmanabhan/
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minima, sparseness of the solution and capacity control obtained 
by acting on the margin, or on number of support vectors, etc. 
SVM is an emerging technique pioneered by Vapnik [17]. It is an 
interdisciplinary field of machine learning, optimization, statisti-
cal learning and generalization theory. Basically, it can be used 
for pattern classification and non-liner regression. SVM considers 
the application of SVM as quadratic programming problem of the 
weights of various factors including regularization factor. Since a 
quadratic programming problem is a convex function, the solution 
of quadratic programming problem is global (or even unique) in-
stead of a local solution. The advantages of SVM [18] are:

(1) The architecture of the system need not be determined 
before training. Input data of any arbitrary dimension can be treat-
ed only linearly regarding the relation of cost to the number of 
input dimensions. 

(2) SVM treats regression as a quadratic programming prob-
lem of minimizing the data fitting error plus generalization, which 
produces a global solution having minimum fitting error, while 
high generalization of the estimated model can be obtained. 

4.2.1. SVM formulation for Non-linear regression

Consider the regression on the data set, D = {(x1, y1), (x2, y2)---
---------(xN, yN)}, with N data points where xi ∈ Rn  y ∈R. SVM 
formulation for non linear regression is expressed by the follow-
ing equation [19].

Such that

(5)

Where α and α* are the Lagrangian Multipliers (each multiplier is 
expressed as an N-dimensional vector); α i , α j  ∈ α, α i *, α j* ∈α*,  
for 1≤i, j≤ N and α i , α j , α i * α j*  ∈ [0, C]. k, kernel function, ε, user 
pre defined regularization constant; C, user pre-defined positive 
real constant for capacity control.

From the view point of the present study some parameters in 
equation (5) are specified as. N, total number of FE results (data 
points); xi, input process parameters in the ith sample data point, 
i =1, 2, --------N (i.e.  ith process setup), yi , process output warpage 
in the ith sample data point.

α i  and α i * are known as support values corresponding to the 
ith data point, where ith data point means the ith process setup and 
output warpage. Besides, ANOVA kernel function has been used 
for non linear regression.

The ANOVA kernel is constructed by considering X=SN for 
the set ‘S’ and kernels k(i) on S×S, where i=1, 2,----N, for p=1, 2,-

-----N. The ANOVA kernel order P is defined as 

(6)

 
If P=N, the sum consists of only of the term for which (i1, 

-----ip) = (1, ----N) and k equals the tensor product k(1) ⊗ ------ ⊗ 
k(N). At the other extreme, if P=1, then the products collapse to one 
factor each, and k equals the direct sum k(1) ⊕ ------ ⊕ k(N). For 
intermediate values of P, the kernels lie in between tensor products 
and direct sums.

The non linear model is given as:

(7)

FE 
Out Put

(mm)

ANN 
Out Put

(mm)

% Error 
of FE and 

ANN    

SVM 
Out Put

(mm)

% Error 
of FE and 

SVM  
1.956 1.95757 0.0801 1.956 0.0000
1.950 1.95757 0.3880 1.950 0.0000
1.501 1.58351 5.4970 1.251 16.6556
1.680 1.58351 5.7434 1.680 0.0000
1.160 1.17906 1.6431 1.160 0.0000
1.181 1.17906 0.1643 1.181 0.0000
1.179 1.17906 0.0051 1.360 15.3520
1.084 1.10153 1.6169 1.084 0.0000
2.462 2.18337 11.3172 2.410 2.1121
1.985 2.18337 9.9935 1.696 14.5592
2.052 2.18337 6.4021 2.052 0.0000
1.897 1.89969 0.1417 1.897 0.0000
1.897 1.89969 0.1417 1.897 0.0000
1.632 1.61184 1.2351 1.632 0.0000
1.589 1.61184 1.4376 1.589 0.0000
1.203 1.22991 2.2368 1.203 0.0000
1.229 1.22991 0.0739 1.262 2.6851
1.262 1.22991 2.5429 1.262 0.0000
2.375 2.35864 0.6888 2.375 0.0000
1.360 1.35761 0.1755 1.179 13.3088
2.410 2.39191 0.7506 2.497 3.6100
2.262 2.14088 5.3544 2.229 1.4589
1.696 1.69626 0.0150 2.096 23.5849
1.251 1.27119 1.6139 1.501 19.9840
2.096 2.16039 3.0721 1.985 5.2958
1.497 1.49085 0.4106 1.462 2.3380

Absolute relative error       Absolute relative error
=2.413125% = 4.651704%

Table 6.  Comparison of warpage of FE, ANN and SVM results 
for training data

Table 7.  Comparison of warpage of FE, ANN and SVM results 
for Validation data

FE 
Out Put

(mm)

ANN 
Out Put

(mm)

% Error 
of FE and 

ANN    

SVM 
Out Put

(mm)

% Error 
of FE and 

SVM  
2.084 1.95757 6.06689 2.00622 3.73225
1.086 1.10153 1.42974 1.11089 2.29190
1.589 1.61184 1.43759 1.63718 3.03210
2.222 2.35864 6.14945 2.26082 1.74707
1.929 1.92867 0.01737 1.73659 9.97460

Absolute relative error       Absolute relative error
=3.020207% = 4.155583%

B. Sidda Reddy, J. Suresh Kumar, Vijaya Kumar Reddy and G. Padmanabhan/
 Journal of Engineering Science and Technology Review 2 (1) (2009) 56-62



61

  
Fig 5, 6, and 7 shows the comparison of Finite element results 

with artificial neural networks and support vector machines for 
training, validating and testing of warpage results respectively.

5. Extensions and Future Studies 

This paper can be further extended by considering the more 

number of input process parameters such as injection velocity, in-
jection time, runner types, gate location together with the process 
parameters of the mold temperature, melt temperature, packing 
pressure, packing time and cooling time to study the effect of war-
pae of injection molded parts. The application of soft computing 
techniques namely artificial neural networks and support vector 
machines can also be employed to predict the warpge of other 
thin shell plastic parts having complex geometry. This paper can 
be further extended by considering the more number of output 
characteristics such as shrinkage, sink index, weld and meld lines, 
flow mark, flash, sink mark and void etc together with warpage for 
the input process parameters such as injection velocity, injection 
time, runner types, gate location together with the process param-
eters of the mold temperature, melt temperature, packing pressure, 
packing time and cooling time.

6. Conclusions 

Warpage values were found by analyses which were done by a 
computer aided engineering software MoldFlow plastic insight 
(MPI) 5.0 software using Taguchi’s orthogonal array. Based on the 
Finite element results and the results predicted by artificial neural 
networks and support vector machines, the following conclusions 
are drawn.

1. Artificial neural network model and support vector machines 
model for warpage has been developed by considering the 
process parameters namely, mold temperature, melt tempera-
ture, packing pressure, packing time and cooling time.

2. The results predicted by artificial neural networks and sup-
port vector machines for training, validation and test data, are 
compared with the simulation results.

3. The artificial neural network model could predict the warp-
age (mm) with absolute relative error of 2.413125% or 
97.586875% accuracy from training data set, 3.020207% 
or 96.979793% accuracy from validating data set and 
4.423789% or 95.576211% from testing data.

4. The support vector machine model could predict the warp-
age (mm) with absolute relative error of 4.651704% or 
95.348296% accuracy form training data set, 4.155583% 
or 95.844417% accuracy from validating data set, and 
4.990718% or 95.009282% from testing data.

5. The absolute relative error predicted by the artificial neural 
networks and support vector machines is less than 5%. Hence, 
the ANN and SVM predicted results are in good agreement 
with finite element results of warpge.

6. From the absolute relative error, it is concluded that the arti-
ficial neural networks predicts with high accuracy compared 
with support vector machines.
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Table 8.  Comparison of warpage of FE, ANN and SVM results 
for Test data

FE 
Out Put

(mm)

ANN 
Out Put

(mm)

% Error 
of FE and 

ANN    

SVM 
Out Put

(mm)

% Error 
of FE and 

SVM  
1.510 1.58351 4.8682 1.63050 7.98013
1.085 1.10153 1.5232 1.11089 2.38618
1.680 1.89969 13.0767 1.79407 6.78988
2.352 2.35864 0.2823 2.26082 3.87670
1.652 1.69113 2.3684 1.71677 3.92070

Absolute relative error Absolute relative error
=4.423789% = 4.990718%

Figure 5. Comparison of FE, ANN & SVM Results for training

Figure 6. Comparison of FE, ANN & SVM Results for Validation 

Figure 7. Comparison of FE, ANN & SVM Results for Test Data 
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