
 
 
 

Journal of Engineering Science and Technology Review 2 (1) (2009) 8-11 
 

Research Article 
 

Time series cross prediction in a single transistor chaotic circuit using neural 
networks 
 

M. P. Hanias*,1 and L. Magafas2 

 
1Technological and Educational Institute of Chalkis, GR 34400, Evia, Chalkis, Hellas 

2Department  of Electrical Engineering, Kavala Institution of Technology, St. Loukas 65404 Kavala, Hellas.  
Received 10 November 2008; Revised 12 January 2009 Accepted 18 February 2009 

 
___________________________________________________________________________________________ 
 
Abstract 
 
In this paper we will be trying to cross predict a multivariate time series of a single transistor chaotic circuit using neural 
networks. For this purpose we investigate the influence of a number of first and second order near neighbors in 
predicting chaotic time series using a back propagation neural network. This influence is examined by changing the 
number of neurons in the hidden layer of a backprogation neural network with one hidden layer. The number of neurons 
at the input layer were equal to the embedding dimension of the corresponding strange attractor. 
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1.  Introduction 
 
In certain number of previous papers, a chaotic circuit with a 
single bipolar junction transistor (BJT) was described and 
analyzed, as an externally driven and controlled chaotic 
signal generator [1,2]. The operation of this circuit - 
characterized as a RLT circuit – was simulated using 
MultiSim, a widely accepted circuit simulation software that 
provides an interface adequately close to real 
implementation [3,4]. As a follow-up to this work, this paper 
examines the influence of a number of first and second order 
near neighbors in predicting chaotic time series using back 
propagation neural network.  
 
 
2. Single Transistor Ciruit Description 
 
The RLT circuit shown in Fig.1 (a). It consists of a basic 
common emitter configuration of a BC107BP npn-type BJT 
with an emitter degeneration resistor R1=3KΩ and a 
collector resistor R2=30Ω in series. The circuit is driven by 
an input sinusoidal voltage of  amplitude V1 applied through 
an inductor L=75μH directly to the transistor base where its 
power is supplied by a sinusoidal voltage υ2 of amplitude V2 
connected to the transistor collector through R2. We are 
examining its operation by means of the MultiSim circuit 
simulation environment, as illustrated in Fig.1(b), and by 
monitoring voltage υy across the emitter resistor R1 and 
voltage υx across the collector resistor R2. 

                                          υ2= V2sinω2t 
  
                        R2=30Ω           iC(t) 
             
                                    L=75μH      
               BC107BP 
                                                  υx=υ2-iCR2 
  υ1=V1sinω2 t                                                         
                                                 R1=3 ΚΩ                                υy ≅ iR1 
        
  

 
(a) 

 

 
(b)  

Fig.1. (a) The considered RLT circuit, and (b) its simulation 
environment. 

 
Clearly, both voltages υx and υy depend on the collector 

current iC(t) which, under certain conditions, turns to be an 
important circuit parameter, since it will become chaotic 
when the circuit exhibits chaotic operation. For example, the 
initial RLT circuit in [1] exhibits chaotic operation although 
triggered by a sinusoidal (and definitely not chaotic) input 
voltage. This chaotic operation has been explained by the 
chaotic nature of the collector current as a result of the 
biasing state of both base-emitter and collector-base 
junctions that could have lead the transistor to operate in its 
reverse active region, [1]. Following that and considering the 
incorporated RLT circuit as shown in Fig.1, it is reasonable 
to expect that both the amplitude and frequency values of 
input signal υ1=V1sinω1t as well as the supply voltage 
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υ2=V2sinω2t, may strongly affect its operation and, most 
probably, the presence of chaos. This can be seen in Fig.2, 
which depicts the obtained chaotic time series of the output 
signal υy(t)=iC(t)R1 for input signal amplitude V1=13 volts 
and frequency f1=1KHz and V2=12 volts and frequency 
f2=995 Hz. 

 

 
 
Fig.2. Chaotic output signal υy=υy(t) (red – line) across the emitter 
resistor R1 and υx=υx(t) (green – line) across the collector resistor R2 for 
the RLT circuit of Fig.1 (b). For f1=1KHz and  f2=995Hz both time-
series are chaotic. 

 
 

3.  RLT’s strange attractor’s properties  
 
In order to examine the influence of a number of first and 
second order near neighbors in predicting chaotic time series 
we ought to find the corresponding numbers. From the 
previous work [2] it is known that the embedding 
dimensions of the emitter’s  and collector’s voltage time 
series  corresponding strange attractors, are 3 . For the 
emitter’s voltage phase space  and according to [2] ,we used 
embedding dimension m=3 and delay time, τ=13. Putting 
Theiler window at W=24 and applying the method proposed 
by [5, 6] we found:   
for radius ε= 1.81x10-1 , the number of first order Nearest 
Neighbors is found to be 6 
for radius ε=2.57x10-1 the number of second order Nearest 
Neighbors is found to be 17 
 Also for the collector voltage’s phase space we used 
embedding dimension  m=3, delay time, τ=3, Theiler 
window W=26 and applying the same method we found: 
 for distance ε= 1.98x10-2, the number of first order Nearest 
Neighbors is found to be 10 
for distance ε=7.91x10-2 the number of second order Nearest 
Neighbors is found to be 20. 
 
 
4. Neural Network construction. 
 
The next step is to forecast the time series. For this purpose 
we are going to construct a back propagation network with 
one hidden layer [7-9]. The number of inputs was equal to 
the embedding dimension while the number of neurons at 
hidden layer was equal to the number of first order and 
second order near neighbors correspondingly, while the 
transfer function was tanh. The efficiency of the network 

was measured by applying Mean Square Error between 
actual and forecasted values. For learning and testing 
purpose we used 70% percent of our data while the other 
30% was used for “out of samples” forecasting. In all cases 
the learning process stopped at 100000 epochs with a 
learning rate equal to 0.1. 
 
 
5.  Time series prediction 
 
For RLT time series we used as input from the multivariate 
time series the collector’s time series and as output the 
emitter time series. The results of emitter voltage prediction 
are shown in Tables -1,2,3,4,5,6 and  figures -4,5,6,7,8,9, 

 
Table -1 
 
 Input 

layer  
1 hidden 
layer 

Output 
layer 

MSE 

Number  
of 
neurons 

3 6 1 0.000729545
 

Table -1. Neural network parameters for forecasting emitter time series. 
The number of neurons at hidden layer is equal to the number of first 
order Nearest Neighbors of emitter. The forecasting horizon was 1 time 
ahead. 
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Fig -4 Actual (black line) and predicted (red – line) out of sample 
values of output chaotic signal across emitter (Parameters at Table -1) 
 
 
Table -2 
 
 Input 

layer  
1 hidden 
layer 

Output 
layer 

MSE 

Number 
of 
neurons 

3 17 1 0.000738074

 
Table -2 Neural network parameters for forecasting emitter time series. 
The number of neurons at hidden layer is equal to the number of second 
order Nearest Neighbors of emitter. The forecasting horizon was 1 step 
ahead. 
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Fig -5 Actual (black line) and predicted (red – line) out of sample 
values of output chaotic signal across emitter (Parameters at 
Table -2) 

 
Table -3 
 
 Input 

layer  
1 hidden 
layer 

Output 
layer 

MSE 

Number  
of 
neurons 

3 6 5 0.017719191

 
Table -3 Neural network parameters for forecasting emitter 
time series. The number of neurons at hidden layer is equal to 
the number of first order Nearest Neighbors of emitter. The 
forecasting horizon was 5 steps ahead. 
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Fig -6 Actual (black line) and predicted (red –  line) out of sample 
values ofoutput chaotic signal across emitter (Parameters at 
Table -3) 

 
Table -4 
 
 Input 

layer  
1 hidden 
layer 

Output 
layer 

MSE 

No of 
neurons 

3 17 5 0.016408674

 
Table -4 Neural network parameters for forecasting emitter time series. 
The number of neurons at hidden layer is equal to the number of second 
order Nearest Neighbors of emitter. The forecasting horizon was 5 
ahead. 
 

 It’s clear that the MSE is smaller when we use the 
emitter’s strange attractor’s  second order number of near 
neighbors compared to the first order  number of near 
neighbors.  
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Fig -7: Actual (black line) and predicted (red –  line) out of sample 
values ofoutput chaotic signal across emitter (Parameters at Table -4) 

 
Table -5 
 Input 

layer  
1 hidden 
layer 

Output 
layer 

MSE 

No of 
neurons 

3 10 5 0.017483843

 
 
Table -5 Neural network parameters for forecasting emitter time series. 
The number of neurons at hidden layer is equal to the number of first 
order Nearest Neighbors of collector. The forecasting horizon was 5 
steps ahead. 
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Fig -8:Actual (black line) and predicted (red – line) out of sample 
values ofoutput chaotic signal across emitter (Parameters at Table -5) 
 
 
Table -6 
 Input 

layer  
1 hidden 
layer 

Output 
layer 

MSE 

No of 
neurons 

3 20 5 0.014810729

 
Table -6 Neural network parameters for forecasting emitter time series. 
The number of neurons at hidden layer is equal to the number of second 
order Nearest Neighbors of collector. The forecasting horizon was 5 
steps ahead. 

 10



M. P. Hanias and  L. Magafas / Journal of Engineering Science and Technology Review2 (1) (2009) 8-11 
 

 11

0 100 200 300 400 500 600 700
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
E

m
itt

er
 V

ol
ta

ge
 (V

)

Time index

 
Fig -9:Actual (black line) and predicted (red – line) out of sample 
values ofoutput chaotic signal across emitter (Parameters at Table -6) 
 
When we use the collector’s strange attractor’s  second order 
number of near neighbors we get same  results, i.e.  the MSE 
is smaller when we use the second order number of near 

neighbors compared to  the first order  number of near 
neighbors.  
 
 
6. Conclusion 
 
From the above mentioned tables and corresponding figures 
it is clear that the quality of prediction depends on the 
number of near neighbors that was used as the number of 
hidden layer’s neurons. According to MSE, the second order 
number of near neighbors gives smaller MSE than first 
order, particularly when the forecast horizon is increased. 
Conseycouently, using the emitter’s strange attractor second 
order number of near neighbors we have better results 
compared to those when  using the collector’s strange 
attractor’s second order number of near neighbors. This 
conclusion can be explained by assuming a chaotic nature  
of the collector current as a result of the biasing state of both 
base-emitter and collector-base junctions which could have 
lead the transistor to operate in its reverse active region. 
 

 
______________________________ 

References 
 

1. M.P.Hanias, G.S.Tombras “Time series analysis in a single 
transistor chaotic circuit”, Chaos, Solitons, and Fractals, 2008, (in 
press – available online).  

7. Hanias, M.P.; Karras, D.A., “Improved Multistep Nonlinear Time 
Series Prediction by applying Deterministic Chaos and Neural 
Network Techniques in Diode Resonator Circuits” Intelligent 
Signal Processing, 2007. WISP 2007. IEEE International 
Symposium on 

2. M.P.Hanias, G.S.Tombras “Time series cross prediction a single 
transistor chaotic circuit”, Chaos, Solitons, and Fractals, 2008, (in 
press – available online).  8. Hanias, M.P.; Karras, D.A., “Efficient Non Linear Time Series 

Prediction Using Non Linear Signal Analysis and Neural 
Networks in Chaotic Diode Resonator Circuits”, Lecture Notes in 
Computer Science, Springer Berlin / Heidelberg, 0302-9743 
(Print) 1611-3349 (Online), Volume 4597/2007,p329-338, (2007) 

3. K.E.Lonngren, IEEE Transactions on Education, Vol. 34, No.1, 
February, 1991. 

4. G.Mykolaitis, A.Tamaševičius, and S.Bumelienė, Electronics 
Letters, V.40, No.2,   pp.91-92, 2004. 

5. Kantz H. and T.Schreiber (1997), Nonlinear Time Series Analysis, 
Cambridge  University Press, Cambridge.  

9. Hanias, M.P.; Karras, D.A., “On efficient multistep non-linear 
time series prediction in chaotic diode resonator circuits by 
optimizing the combination of non-linear time series analysis and 
neural networks” , Engineering Applications of Artificial 
Intelligence (in press – available online) (2008) 

6. Kennel M.B., Brown R., Abarbanel H.D.I. “Determining 
embedding dimension for phase-space reconstruction using a 
geometrical construction”, Phys. Rev. A, 45, 3403, (1992). 

 


