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Abstract 
 
Capillarity is an important phenomenon in nature and life. In this note the theory upon which the capillary action relies 
as well as the interface shapes for certain types of capillary systems under gravity is briefly outlined. Schematic presen-
tations are also given.   
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 A tube, the bore of which is so small that it will only 
admit a hair (Latin capilla) is called a capillary tube. When 
such a tube of glass, open at both ends, is placed vertically 
with its lower end immersed in water, the water is observed 
to rise in the tube, and to stand within the tube at a higher 
level than the water outside. The action between the 
capillary tube and the water has been called capillary action, 
and the name has been extended to many other phenomena 
which have been found to depend on properties of liquids 
and solids similar to those which cause water to rise in 
capillary tubes. The forces which are concerned in these 
phenomena are those which act between neighboring parts 
of the same substance, and which are called forces of 
cohesion, and those which act between portions of matter of 
different kinds, which are called forces of adhesion. These 
forces are quite insensible between two portions of matter 
separated by any distance which we can directly measure. It 
is only when the distance becomes exceedingly small that 
these forces become perceptible (J.C.Maxwell [1]).  
 

 

 
 
Figure 1. Cohesion and adhesion forces. 
 
 
 Let a marginal molecule common to both the liquid sur-
face that is in contact with a solid and the liquid free surface 
(Fig.1). On this molecule the cohesion and adhesion forces 
Fc and Fa will exert a resultant force F. At this point the liq-
uid surface tends to get a position such that to become nor-
mal to F. When Fa>Fc the liquid is wetting the solid surface; 
i.e. the liquid free surface becomes concave near the solid 
plate and the contact angle θ<90ο (Fig.1a). When Fa<Fc the 
liquid does not wet the solid surface; i.e. the liquid free sur-
face becomes convex near the solid and θ>90o (Fig.1b).  
 If a liquid is placed inside a solid tube the requirement 
that the liquid/gas interface must meet the liquid/solid inter-
face at the correct contact angle prevents the surface of the 
liquid from being plane (Fig.2). The resulting curvature of 
the surface creates a pressure difference ΔP which is given 
by the Young-Laplace equation [2-6]: 
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jP γ=Δ ,                (1) 
 
where γ is the surface tension and j is the mean curvature of 
the surface. Since the capillary is circular in cross section the 
meniscus will be approximately hemispherical with radius rm 
and j=2/rm. If the liquid meets the wall of the capillary at 
some angle θ then rm=rccosθ where rc is the capillary radius. 
In the case of perfect wetting θ=0o or: 
 

cr
P γ2
=Δ .                (2)  

 
In any wetting case the liquid will rise [7,8] in a tube until 
the force acting to pull the liquid upwards is balanced by the 
weight of the column of liquid supported in the tube [9].  

 
Figure 2. Capillary rise. 
 
 
The pressure Pg in the gas phase (e.g. air) just above the in-
terface will be equal to: 
 

ghPP g
og ρ−= ,             (3) 

 
where Po is the pressure at the free surface of the liquid, ρg is 
the gas density, g is the acceleration of gravity, and h is the 
height of liquid column. The pressure Pl in the liquid phase 
(e.g. water) just beneath the interface will be equal to: 
 

ghPP l
ol ρ−= ,              (4) 

 
where ρl is the density of the liquid. Since ρl>ρg the pressure 
existing in the liquid phase beneath the gas/liquid interface is 
less than the pressure which exists in the gaseous phase 
above the interface. From hydrostatics this difference in 
pressure existing across the interface [10] will then be equal 
to:  
 

( ) ghghPP gl
lg ρρρ Δ=−=− .         (5) 

On equilibrium Eq.2 and 5 must be equal: 
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where α is the capillary constant.  
 
 

 
 
Figure 3. Mean curvature. Let O is a point and Z is the normal to the 
surface at that point. A plane which contains the normal will eventually 
intersect the surface to a line of intersection (is not shown). The radius 
of curvature for this line (which in general will be curved) is that for a 
circle tangent to the line at point O. Note that this radius is not yet the 
principal radius. By rotating the plane around the normal the radius of 
curvature will go through a minimum. Let this minimum corresponds to 
a line of intersection AB. Then this will be the first principal radius of 
curvature R1 at point O. The second principal radius of curvature R2 is 
obtained by simply passing a second plane through the surface, also 
containing the normal, but perpendicular to the first plane where the 
first principal radius of curvature is defined. This second plane cuts now 
the surface to CD. The radius of curvature which corresponds to CD is 
the second principal radius of curvature at point O and is always hap-
pened to be of maximum value. The pressure difference ΔP cannot de-
pend upon the manner in which R1 and R2 are chosen, however, and it 
follows that the mean surface curvature J is independent of the direc-
tions of the orthogonal planes within which lie osculating circles. In 
other words if U1 and U2 are two radii of curvature (but not the principle 
ones) corresponding to two unspecified sections at right angles contain-
ing the same normal, then at point O: J=(1/U1)+(1/U2)=(1/R1)+(1/R2). 
 
 
 For air/water interfaces at room temperature α≅4mm. 
Under the influence of gravity the meniscus will differ from 
sphericity, however. For very narrow capillaries (i.e. when 
r<<h) Lord Rayleigh [11] has shown that: 
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 In the general case of capillary rise j and hence ΔP will 
vary with the location of a point of question on the interface. 
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( )ZHJ −=

For systems at equilibrium in a gravitational field the curva-
ture only varies in the vertical direction (e.g. z). Since h is 
the height of the liquid column up to the apex of the menis-
cus then for a point (x, z) on the interface the elevation will 
be h+z. Therefore Δρg(h+z)=γj while the capillary constant 
α may be further used to reduce the involved quantities. The 
constant α may also be used in several other capillarity prob-
lems which require only Δρ and γ. By setting Δρ to be al-
ways positive the general formulation [12] of the problem is 
given as: 
 

λ2 .              (8) 
 

Where J=αj, H=h/α, Z=z/α, and λ=±1. The parameter λ 
takes into account the sign of J. Equation 8 is a differential 
equation which only under certain conditions can be numeri-
cally solved. The source of this complication emanates from 
J and whether or not it is possible to be described analyti-
cally [13-23].  
 At a point on a surface the curvature varies with direc-
tion. In general, there are two directions in which the radius 
of curvature has an absolute maximum and minimum. These 
are the principal directions and Euler’s theorem shows that 
they are perpendicular [24]. The principal curvatures at the 
point are the curvatures in these directions (see Fig.3). 

 
Figure 4. Meridians for axisymmetric fluid bodies in a gravitational 
field. 
 
 In capillarity most of the situations which can be pro-
duced under laboratory conditions refer to systems with an 
axis of rotational symmetry (Fig.4) and for these it is possi-
ble to write down explicit expressions for the radii of curva-
ture from analytical geometry. A plane which passes through 
the axis of revolution will cut the surface under investigation 
to a meridian section. The meridional principal radius R1 
then swings in the plane of paper i.e. it is the curvature of the 

meridional profile at the point of question (X, Z). The azi-
muthal radius of curvature R2 must then be in the plane per-
pendicular to that of the paper at the given point i.e. it is ob-
tained by prolonging the normal to the profile until hits the 
axis of revolution. In the Cartesian form R1 and R2 may be 
defined as the first and second derivatives of Z with respect 
to X.  
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Figure 5. An interface meeting a plane wall (X=0 plane) with some con-
tact angle. The meridian angle Φ is shown. 
 
Alternatively, the meridian angle Φ may be introduced (see 
Fig.5). Thus:  
 

⎪
⎪
⎩

⎪
⎨

Φ=Φ=
Φ

= sin,cos,sin1

2

1

dS
dZand

dS
dX

XR

dZdXdSR⎪
⎧ Φ

−=
Φ

=
Φ

=
)(cos)(sin1 ddd

     (11) 

  
 To demonstrate the solution of Eq.8 for a simple case let 
us assume an interface meeting a vertical plane in the pres-
ence of a gravitational field (Fig.5) . Since a capillary action 
is only possible very near to the plate the rest of the liquid 
will be asymptotically quite flat and since there is no axis of 
symmetry the Y direction will  be linear even very close to 
the plate, thus H=0 and R2=∞. Then Eq.8 takes the form: 



A. Ch. Mitropoulos / Journal of Engineering Science and Technology Review 2 (1) (2009) 28-32 
 
 

 
 

Figure 6. The capillary curve. 
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Integration of Eq.12 with initial conditions Φ=180o and Z=0 
gives: 
 

Φ+±= cos1Z .           (13)        
 
Combining Eq.12 and 13 it comes that: 
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Multiplying Eq.14 with dX/dS=cosΦ yields: 
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Integration of Eq.15 gives: 
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 By plotting X vs Z one obtains the capillary curve; Fig.6 
shows this curve including negative and positive values with 
the coordinates conveniently shifted. Equations 13 and 16 
may be used to approximate holm meridians while Eq.13 
alone gives the height of a large sessile drop. More compli-
cate situations require the use of elliptic integrals of the first 
and second kind. 
 In this note, which is the third in a series of lecture motes 
in colloids and interface science [25, 26], the physics of cap-
illary systems is preliminary reviewed. In general J and 
hence ΔP will vary with the location of the point (X, Z) on 
the interface. For systems at equilibrium in a gravitational 
field the curvature, J, only varies in the vertical direction. 
For systems such as those in Fig.4, having an axis of sym-
metry aligned vertically, expressions for J and ΔP give a dif-
ferential equation which can be solved numerically subject 
to specified conditions to give the meridian curve (X, Z). 
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