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Abstract 

 
In this paper, an attempt has been made to develop an accurate mathematical model for predicting the surface roughness 

in end milling of P20 mould steel using artificial neural networks (ANN). For training and testing of the ANN model, a 

number of experiments have been carried out using Taguchi’s orthogonal array in the design of experiments (DOE). The 

cutting parameters used are nose radius, cutting speed, cutting feed, axial depth of cut and radial depth of cut. The ANN 

model was developed using multilayer perceptron (MLP) network for nonlinear mapping between the input and the 

output parameters. The adequacy of the developed model is verified using coefficient of determination (R). It was found 

that the R2 value is 1 for surface roughness. To judge the ability and efficiency of the ANN model, percentage deviation 

and average percentage deviation has been used. The research showed acceptable prediction results for the ANN model. 

 
 Keywords: P20 mould steel, Design of Experiments, Artificial Neural Networks, MLP. 
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1. Introduction  

 

Milling is the most common form of machining process used 

in the production of moulds/dies, due to the high tolerances 

and surface finishes by cutting away the unwanted material. 

The selection of Pre-hardened steel (P-20) is widely used in 

production of molds/dies because of less wear-resistant and 

are used for large components. In the past, Abbas Fadhel 

Ibraheem et al. [1] investigated the effect of cutting speed, 

feed, axial and radial depth of cut on cutting force in 

machining of modified AISI P20 tool steel in end milling 

process. They concluded that, higher the feed rates, larger 

the cutting forces. They also developed the genetic network 

model to predict the cutting forces. Muammer Nalbant et al. 

[2] used the multiple regression analysis and artificial neural 

network models for predicting the surface roughness in 

turning of AISI 1030 steel material. These techniques used 

full factorial design and analysis of variance (ANOVA). 

According to them, Surface roughness increases with 

increase of feed rate but decreases with increase of insert 

nose radius. Ekanayake and Mathew [3] investigated the 

effect of cutting speed, feed and depth of cut on cutting 

forces with different inserts while milling AISI1020 steel. 

According to them, the tool offsets and run-outs affect 

significantly on the cutting forces when it comes to high 

speed milling, where small cut sections are employed. This 

can cause uneven wear of the tool tips due to uneven chip 

loads. Lajis et al. [4] developed the response surface model 

to predict the tool life in end milling of hardened steel AISI 

D2. This technique used central composite design in the 

design of experiments and ANOVA. The objective was to 

obtain the contribution percentages of the cutting parameters 

(cutting speed, feed and depth of cut) on the tool life. 

Richard Dewes et al. [5] carried out the study on rapid 

machining of hardened AISI H13 and D2 moulds, dies and 

press tools. The primary objective was to assess the drilling 

and tapping of AISI D2 and H13 with carbide cutting tools, 

in terms of tool life, workpiece quality, productivity and 

costs. The secondary aim was to assess the performance of a 

number of water-based dielectric fluids, intended primarily 

for EDM operations, against a standard soluble oil cutting 

fluid, in order to assess the feasibility of a duplex machining 

arrangement involving HSM and EDM on one machine tool. 

Mohammad Reza Soleymani Yazdi and Saeed Zare 

Chavoshi [6] studied the effect of cutting parameters and 

cutting forces on rough and finish surface operation and 

material removal rate (MRR) of AL6061 in CNC face 

milling operation. The objective was to develop the multiple 

regression analysis and artificial neural network models for 

predicting the surface roughness and material removal rate. 

According to them, in rough operation, the feed rate and 

depth of cut are the most significant effect parameters on Ra 

and MRR and increases with the increase of the cutting 

forces. Abou-El-Hossein et al. [7] developed the model for 

predicting the cutting forces in an end milling operation of 

modified AISI P20 tool steel using the response surface 

methodology (RSM). Khalid Hafiz et al. [8] developed the 

response surface model to predict the tool life in end milling 

of hardened steel AISI H13 hardened tool steel. This 

technique used central composite design in the design of 

experiments and ANOVA. The objective was to obtain the 
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contribution percentages o f the cutting parameters (cutting 

speed, feed and depth of cut) on the tool life. Rahman et al. 

[9, 10] compared the machinability of the P20 mould steel 

(357 HB) in dry and wet milling conditions. They 

considered a range of 75–125 m/min for the cutting speed 

and a feed ranging between 0.3 and 0.7 mm/tooth: they 

found the cutting forces in both processes to be similar, but 

with the flank wear acceleration higher in dry milling. 

Furthermore, they observed a better surface finish with wet 

milling. Liao and Lin [11] studied the milling process of P20 

steel with MQL lubrication. The cutting speeds were from 

200–500 m/min and the feed between 0.1–0.2 mm/tooth. 

The authors found that the tool life is higher with MQL, due 

to an oxide layer formed on the tool inserts that helped to 

lengthen the tool life. 

 In the present work an attempt has been made to develop 

the artificial neural network model to predict the surface 

roughness in end milling of P20 steel by considering the 

input parameters such as cutting speed, feed rate, axial-depth 

of cut, radial depth of cut and nose radius. The developed 

model is tested using test data. The predicted results were 

analyzed through experimental verification. To have more 

precise investigation in to the models, a regression analysis 

of experimental and predicted outputs was preformed. It was 

found that the R2 value is 1 for surface finish. To judge the 

ability efficiency of the developed model, percentage 

deviation and average percentage deviation has been used. 

 

 

2. P20 Mould Steel Material 

 

The workpiece material used for the present investigation is 

P20 mould steel of flat work pieces of 100 mm ×100 mm 

×10mm and the density of the material in metric units is  

7.8 g / cc. The chemical composition of the workpiece 

material is given in the Table 1. 

 

 

Table 1. Chemical composition of P20 mould steel 

Composition Weight (%) 

Carbon 0.35-0.45 

Silicon 0.2-0.4 

Manganese 1.3-1.6 

Chromium 1.8-2.1 

Molybdenum 0.15-0.25 

 

 

3 Artificial neural networks 

 

The use of artificial neural networks (ANN) has been well 

accepted in the areas of telecommunication, signal 

processing, pattern recognition, prediction, process control 

and financial analysis. Artificial neural networks which are 

simplified models of the biological neuron system, is a 

massively parallel distributing processing system made up of 

highly interconnected neural computing elements or 

processing units is called neurons. Neural networks are built 

by connecting these neurons together by weighted inter 

connections. Determination of these weights called training 

is the most significant task. In supervised learning the 

network is trained to learn a mapping from certain inputs to 

given outputs. An example of supervised learning is the back 

propagation method for multilayer perceptron (MLP) 

networks. Multilayer means the addition of one or more 

hidden layers in between the input and output layers. In the 

network each neuron receives total input from all of the 

neurons in the preceding layer according to the Eq. (1). 

 

N
net W X

j ij ij 0
 


      (1) 

 

where netj is the total or net input and N is the number of 

inputs to the j
th
 neuron in the hidden layer. Wij is the weight 

of the connection from the i
th
 neuron in the forward layer to 

the j
th
 neuron in the hidden layer. A neuron in the network 

produces its output (Out j) by processing the net input 

through an activation (Transfer) function, such as sigmoidal 

function as in Eq. (2).  

 

netj
e1

1
)jf(netjOut




       (2) 

 

In the training process the algorithm is used to calculate 

neuronal weights, so that the squared error between the 

calculated outputs and observed outputs from the training set 

is minimum and is calculated using Eq. (3). 

 

2)
i i

iyi(dE         (3) 

 

where di is the desired response (or target signal), yi are the 

output units of the network, and the sums run over time and 

over the output units. When the mean square error is 

minimized, the power of the error (i.e. the power of the 

difference between the desired and the actual ANN output) 

is minimized [12]. 

 

 

4. Experimental details 

 

The design of experiments (DOE) technique has been 

implemented to conduct the experiments. It is a powerful 

work tool which allows us to model and analyse the 

influence of determined process variables over the specified 

variables, which are usually known as response variables. 

These response variables are unknown functions of the 

former design variables, which are also known as design 

factors. Within the design of experiments, there are various 

types that can be considered. One of the most widely known 

ones is the orthogonal array design. In this study, the surface 

roughness of P20 mould steel material was investigated by 

considering the process parameters, nose radius, cutting 

speed, cutting feed, axial depth of cut and radial depth of 

cut. Therefore, a DOE setup was considered, nose radius 

with two levels and cutting speed, cutting feed, axial depth 

of cut and radial depth of cut with five levels each and then 

2×5×5×5×5=1250 runs were required in the experiments for 

five independent variables. But using Taguchi’s orthogonal 

array the number of experiments reduced to 50 experiments 

from 1250 experiments. All the experiments were conducted 

on CNC Vertical milling machine 600 II as shown in Figure 

1. The specifications of the Vertical milling machine are: 

The tool holder used for milling operation was 

KENAMETAL tool holder BT40ER40080M, Table 

clamping area: 20 TOOLS ATC STANDARD, Maximum 

load on the table: 700 kgs, Spindle taper: BT-40, Spindle 

speeds range:8-8000 rpm, Power: 13 kW, Feed rates range: 

0-12 m/min and the too material used for the present study 
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was coated carbide cutting tool. The machining parameters 

used and their levels chosen are presented in Table 2. 

 

 

 
Fig. 1. Vertical milling machine 600 II 

 

 

Table 2. Machining parameters and their levels 
Machining 

parameter 

Units Symbol Level1 Level2 Level3 Level4 Level 5 

Nose  

radium 

mm R 0.8 1.2 - - - 

Cutting  
speed 

m/min V 75 80 85 90 95 

Feed rate mm/tooth f 0.1 0.125 0.15 0.175 0.2 

Axial depth of 

cut 

mm d 0.5 0.75 1 1.25 1.5 

Radial depth of 

cut 

mm rd 0.3 0.4 0.5 0.6 0.7 

 

 

The average surface roughness (Ra, µm) which is mostly 

used in industrial environments is taken up for the present 

study. The average surface roughness is the integral absolute 

value of the height of the roughness profile over the 

evaluation length and was represented by the Eq. (4). 

 

L1
R Y(x)dxa

L 0
         (4) 

 

where L is the length taken for observation and Y is the 

ordinate of the profile curve. The surface roughness was 

measured by using Surtronic 3
+
 stylus type instrument 

manufactured by Taylor Hobson with the following 

specifications. Traverse Speed: 1mm/sec, Cut-off values 

0.25 mm, 0.80 mm and 2.50 mm, Display LCD matrix, 

Battery Alcaline 600 measurements of 4 mm measurement 

length. The actual setting values for the design matrix [12] 

and experimental results are shown in Table 3. 

 

 

5. Development of ANN model for predicting the surface 

finish 

 
One of the key issues when designing a particular neural 

network is to calculate proper weights for neuronal 

activities. These are obtained from the training process 

applied to the given neural network. To that end, a training 

sample is provided, i.e. a sample of observations consisting 

of inputs and their respective outputs. The observations are 

fed to the network. In the training process the algorithm is 

used to calculate neuronal weights, so that the squared error 

between the calculated outputs and observed outputs from 

the training set is minimized [13]. 

 

 

Table 3. Training data set used in creating ANN model 

S.No R V f d rd Measured 

Surface 

roughness  

(Ra, µm) 

1 0.8 75 0.1 0.5 0.3 0.94 

2 0.8 75 0.125 0.75 0.4 1.16 

3 0.8 75 0.15 1 0.5 1.12 

4 0.8 75 0.175 1.25 0.6 0.86 

5 0.8 75 0.2 1.5 0.7 0.66 

6 0.8 80 0.1 0.75 0.5 0.82 

7 0.8 80 0.125 1 0.6 1.44 

8 0.8 80 0.15 1.25 0.7 0.7 

9 0.8 80 0.175 1.5 0.3 0.92 

10 0.8 80 0.2 0.5 0.4 1.28 

11 0.8 85 0.1 1 0.7 1.08 

12 0.8 85 0.125 1.25 0.3 1.3 

13 0.8 85 0.15 1.5 0.4 1.48 

14 0.8 85 0.175 0.5 0.5 1.44 

15 0.8 85 0.2 0.75 0.6 1.54 

16 0.8 90 0.1 1.25 0.4 0.56 

17 0.8 90 0.125 1.5 0.5 0.46 

18 0.8 90 0.15 0.5 0.6 0.42 

19 0.8 90 0.175 0.75 0.7 0.58 

20 0.8 90 0.2 1 0.3 0.5 

21 0.8 95 0.1 1.5 0.6 0.46 

22 0.8 95 0.125 0.5 0.7 1.1 

23 0.8 95 0.15 0.75 0.3 0.86 

24 0.8 95 0.175 1 0.4 0.48 

25 0.8 95 0.2 1.25 0.5 0.74 

26 1.2 75 0.1 0.5 0.6 0.98 

27 1.2 75 0.125 0.75 0.7 1.2 

28 1.2 75 0.15 1 0.3 1.68 

29 1.2 75 0.175 1.25 0.4 1.06 

30 1.2 75 0.2 1.5 0.5 0.52 

31 1.2 80 0.1 0.75 0.3 1.14 

32 1.2 80 0.125 1 0.4 2.48 

33 1.2 80 0.15 1.25 0.5 1.74 

34 1.2 80 0.175 1.5 0.6 1.48 

35 1.2 80 0.2 0.5 0.7 1.72 

36 1.2 85 0.1 1 0.5 0.52 

37 1.2 85 0.125 1.25 0.6 0.92 

38 1.2 85 0.15 1.5 0.7 0.76 

39 1.2 85 0.175 0.5 0.3 0.64 

40 1.2 85 0.2 0.75 0.4 0.96 

41 1.2 90 0.1 1.25 0.7 0.8 

42 1.2 90 0.125 1.5 0.3 0.5 

43 1.2 90 0.15 0.5 0.4 1.54 

44 1.2 90 0.175 0.75 0.5 1.27 

45 1.2 90 0.2 1 0.6 1.32 

46 1.2 95 0.1 1.5 0.4 0.87 

47 1.2 95 0.125 0.5 0.5 1.1 

48 1.2 95 0.15 0.75 0.6 0.78 

49 1.2 95 0.175 1 0.7 1.14 

50 1.2 95 0.2 1.25 0.3 0.87 
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5.1 Designing of the Neural Network Architecture 

 

The optimal neural network architecture 5-13-1 was used in 

this study is shown in Figure 2. It was designed using 

NeuroSolutions 4.0 software. The network consists of one 

input, one hidden and one output layer. The input layer has 5 

neurons, hidden layer has thirteen neurons and output layer 

has one neuron respectively. Since surface roughness 

prediction in terms of nose radius, cutting speed, cutting 

feed, axial depth of cut and radial depth of cut was the main 

interest in this research, neurons in the input layer 

corresponding to the nose radius, cutting speed, cutting feed, 

axial depth of cut and radial depth of cut, the output layer 

corresponds to surface roughness. 

 

 

 
Fig. 2. Neural network architecture designed 

 

 

5.2 Generation of Train and Test Data  

 

To calculate the connection weights, a set of desired network 

output values are needed. Desired output values are called 

the training data set. The training data set in this study was 

created using Taguchi’s L50 orthogonal array in the design of 

experiments. In this study, 50 data set were used for training 

and 12 data set were used for testing the network 

respectively and is given in Table 3 and Table 4. 

 

 

Table 4. Data set used in testing ANN model 

S.No R V f d rd Measured 

surface 

roughness 

(Ra, µm) 

1.  0.8 78 0.14 0.8 0.4 1.96 

2.  0.8 78 0.14 0.8 0.4 1.96 

3.  0.8 78 0.16 1.35 0.6 0.6 

4.  0.8 87 0.14 1.35 0.6 0.78 

5.  0.8 87 0.16 0.8 0.6 0.64 

6.  0.8 87 0.16 1.35 0.4 1.02 

7.  1.2 78 0.16 1.35 0.4 1.16 

8.  1.2 78 0.16 0.8 0.6 1.56 

9.  1.2 78 0.14 1.35 0.6 0.68 

10.  1.2 87 0.16 0.8 0.4 1.24 

11.  1.2 87 0.14 1.35 0.4 0.94 

12.  1.2 87 0.14 0.8 0.6 1.18 

5.3 Neural network training 

 

For calculation of weight variables, often referred to as 

network training, the weights are given quasi-random, 

intelligently chosen initial values. They are then iteratively 

updated until convergence to the certain values using the 

gradient descent method. Gradient descent method updates 

weights so as to minimize the mean square error (MSE) 

between the network prediction and training data set as in 

Eq. (5) and (6). 

 

ijΔW
old

jiW
new

jiW       (5) 

 


 




k

1t
jout

ijW

Et-kαηijΔW      (6) 

 

where E is the MSE and outj is the j
th
 neuron output. η is the 

learning rate [step size, momentum] parameter controlling 

the stability and rate of convergence of the network.. The 

learning rate [step size 1.0, momentum 0.7] selected and the 

training process takes place on a Genuine Intel x86 Family 6 

Model 14 Stepping 12 ~17 processor PC for 65,000 training 

iterations. The errors obtained after training of the network 

with 55914 epochs and multiple training (three times) are 

given in Table 5. The average of minimum mean square 

error and minimum mean square error is calculated for 

training data is 2.14342E-11 and 1.64866E-11 respectively. 

Figure 3 depicts the convergence of minimum MSE with 

epochs. The comparison between ANN model output and 

experimental output for training data sets are shown in 

Figure 4. Figure 4 showing that, the predicted values using 

ANN is very good correlation and representation with the 

experimental results. 

 

 

Table 5. Error analysis of the network for surface roughness. 

All Runs 

 

Training 

Minimum 

Training 

Standard 

Deviation 

Average of 

Minimum 

MSEs 

2.14342E-11 4.33946E-12 

Average of 

Final MSEs 

2.1454E-11 4.31609E-12 

 

 

 
Fig. 3. Learning behaviour of ANN model for surface roughness 
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Fig. 4. Comparison of Experimental and ANN output for surface 

roughness 

 

 

In order to judge the ability and efficiency of the model 

to predict the surface finish values percentage deviation (Ø) 

and the average percentage deviation ( ) were used and 

calculated as in Eq. (7) and (8) 

 

i
100%

Experimental Predicted

Experimental
  



   (7) 

where  i = percentage deviation of single sample data 

n

i 1 i
φ

n
 


        (8) 

 

where   = average percentage deviation of all sample data 

and n= size of the sample data. The percentage deviation and 

the absolute percentage deviation are shown in Figure 5. The 

average percentage deviation for surface roughness of 

training data calculated as 0.000178%. 
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Fig. 5. Percentage deviations of surface roughness (Training) 

 

 

5.4 Neural network testing 

 

The ANN predicted results are in very good agreement with 

experimental results and the network can be used for testing. 

Hence the testing data sets are applied for the network, 

which were never used in the training process. The results 

predicted by the network were compared with the measured 

values and shown in Figure 6. The percentage deviation and 

absolute percentage deviation is shown in Figure 7. The 

average percentage deviation for test data was found to be 

4.716652%. 

 

 

 
Fig. 6. Verification Test results for surface roughness 
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Fig. 7. Percentage deviations of surface roughness (Testing) 

 

 

5.5 Regression Analysis 

 

To have more precise investigation into the model, a 

regression analysis of predicted and measured values was 

performed and is shown in Figure 8. The adequacy of the 

developed model is verified by using coefficient of 

determination (R
2
). 0 R

2 1. The R
2
 is the variability in 

the data accounted for by the model in percentage [14].  

 

 

 
Fig. 8. Predicted outputs Vs measured outputs 

 

 

The regression coefficient is calculated to estimate the 

correlation between the predicted values by the ANN model 

and the measured values resulted from experimental tests. 

The regression coefficient is calculated by using Eq. (9). 

 

 

 

2

2
2

j j
j

j
j

t o

R 1

o



 



 
 
 
 
  

      (9) 
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where tj = targets or experimental values or measured values, 

oj = outputs or predicted values. 

There is a high correlation between the predicted values 

by the ANN model and the measured values resulted from 

experimental tests. The correlation coefficient for surface 

roughness was 1, which shows there is a strong correlation 

in modeling surface roughness. From Figure 8, it is very 

difficult to distinguish the best linear fit line from the perfect 

line, because the fit is so good. 

 

 

6. Parametric Analysis 

 

The sensitivity test was performed to obtain the variables 

that affect the surface roughness as shown in Figure 9. The 

test shows that feed rate is the most significant effect 

parameter on surface roughness followed by radial depth, 

nose radius, axial depth, and cutting speed. The variation of 

surface roughness for varied inputs is shown in Figures 10-

14. It is concluded that, the surface roughness increases with 

the increase of nose radius and cutting feed, because the 

increase of feed rate increased the heat generation and 

hence, tool wear which resulted in the higher surface 

roughness. The increase in federate also increased the chatter 

and produced incomplete machining at a faster traverse 

which led to higher surface roughness. The surface 

roughness decreases as the cutting speed, axial depth of cut 

and radial depth of cut increases. The reason being, at low 

axial depth of cut the material can’t be removed fully which 

leads to high surface roughness. Whereas at high depth of 

cut the material is being clear of from the surface and 

produce good surface finish.  
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Fig. 9. Sensitivity test 
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Fig. 10. Network Output(s) for Varied Input nose radius 
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Fig. 11. Network Output(s) for Varied Input cutting speed 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.114 0.121 0.127 0.134 0.140 0.146 0.153 0.159 0.166 0.172 0.179 0.185

Varied Input cutting feed (mm/tooth)

S
u
rf

a
c
e
 r

o
u
g
h
n
e
s
s

Ra

 
Fig. 12. Network Output(s) for Varied Input cutting feed 
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Fig. 13. Network Output(s) for axial depth (mm) 
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Fig. 14. Network Output(s) for radial depth (mm) 

 

 

7. Conclusions 

 
Using Taguchi’s orthogonal array design in the design of 

experiments, the machining parameters which are 

influencing the surface roughness in end milling of P20 

mould steel has been modeled using artificial neural 
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networks. Based on experimental and ANN results, the 

following conclusions are drawn. 

 The ANN predicted values are fairly close to the 

experimental values, which indicates that the developed 

model can be effectively used to predict the surface 

roughness of P20 mould steel. 

 The feed rate is the most significant effect parameter on 

surface roughness followed by radial depth, nose radius, 

axial depth, and cutting speed. 

 The ANN model could predict the surface roughness 

with average percentage deviation of 0.000178% from 

training data set. 

 The ANN model could predict the surface roughness 

with average percentage deviation of 4.716652% from test 

data set. 

 The correlation coefficient for surface roughness was 1, 

which shows there is a strong correlation in modeling 

surface roughness. 

 

 
______________________________ 
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