
 
 
 

Journal of Engineering Science and Technology Review 5 (1) (2012) 51-56 
 

Research Article 
 

On Hydromagnetic Modified Thermohaline Convection - an Energy Relationship 
   

H.i Mohan* 
 

Dept. of Mathematics, International Centre for Distance Education and Open Learning (ICDEOL), Himachal Pradesh University, 
Summer Hill Shimla-171005 (HP), India. 

 
Received 17 June 2011; Revised 1 August 2011; Accepted 15 July 2012 

___________________________________________________________________________________________ 
 
Abstract 
 
The problem of modified thermohaline magnetoconvection is considered in the present paper. An attempt is made to 
establish the relationship between various energies in Veronis’ type configurations. The analysis made brings out that for 
Veronis type configuration the total kinetic energy associated with a disturbance exceeds the sum of its total magnetic 

and thermal energies in the parameter regime 1
2

2 4
127

4

SQ Rσ σ
π τ π

′
+ ≤ . A similar energy relationship for Stern’s type 

configuration is also established. Further, these results are valid for quite general nature of boundary conditions. 
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1. Introduction  
 
Thermohaline convection or more generally double diffusive 
convection has matured into a subject possessing 
fundamental departure from its counterpart, namely single 
diffusive convection, and is of direct relevance in the fields 
of oceanography, astrophysics, liminology and chemical 
engineering etc. For a broad and a recent view of the subject 
one may be referred to Brandt and Fernando [1], Balmforth 
et al. [2], Malashetty et al. [3] and Huppert et al. [4]. Two 
fundamental configurations have been studied in the context 
of thermohaline instability problem, the first one by Stern 
[5] wherein the temperature gradient is stabilizing and the 
concentration gradient is destabilizing and the second one by 
Veronis [6] wherein the gradient is destabilizing and the 
concentration gradient is stabilizing. The main results 
derived by Stern and Veronis for their respective 
configurations are that both allow the occurrence of a 
stationary pattern of motions or oscillatory motions of 
growing amplitude provided the destabilizing concentration 
gradient or the temperature gradient is sufficiently large. 
However, stationary pattern of motion is the preferred mode 
of setting in of instability in case of Stern’s configuration 
whereas oscillatory motions of growing amplitude are 
preferred in Veronis’ configuration. More complicated 
double-diffusive phenomenon appears if the destabilizing 
thermal/concentration gradient is opposed by the effect of 
magnetic field or rotation. 
 Banerjee et al [7] presented a modified analysis of 
thermal and thermohaline instability of a liquid layer heated 
underside by emphasizing and utilizing the point that linear 

theoretical explanation of the phenomenon of gravity 
dominated thermal instability in a liquid layer heated 
underside (Benard convection) should depend not only upon 
the Rayliegh number which is proportional to the uniform 
temperature difference maintained across the layer but also 
upon other parameter so that a provision could be made in 
the theory to recognize the fact that a relatively hotter layer 
with its heat diffusivity apparently increased/decreased as a 
consequence of an actual decreased/increased (depending on 
the fluid) in its specific heat at constant volume must exhibit 
Benard convection at a higher/lower Rayliegh number than a 
cooler layer under almost identical condition otherwise and 
further this qualitative effect is not quantitatively 
insignificant. 
 Chandrasekhar [8] in his investigation of magneto 
hydrodynamic simple Benard convection problem sought 
unsuccessfully the regime in terms of the parameters of the 
system alone, in which the total kinetic energy associated 
with a disturbance exceeds the total magnetic energy 
associated with it, since these considerations are of decisive 
significance in deciding the validity of the principle of 
exchange of stabilities. However, the solution for w 
( tan (sin ))cons t zπ= is not correct mathematically (and 
Chandrasekhar was aware of it). Banerjee et. al. until 1985 
did not pursue their investigation in this direction and 
consequently did not see this connection. This gap in the 
literature on magnetoconvection has been completed by 
Banerjee et. al. [9] who presented a simple mathematical 
proof to establish that Chandrasekhar’s conjecture is valid in 
the regime 2

1Qσ π≤  and further this result is uniformly 
applicable for any combination of a dynamically free or rigid 
boundary when the region outside the liquid are perfectly 
conducting or insulating. Banerjee et al. [9] showed that in 
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the parameter regime 1
2 1Qσ

π
≤  the total kinetic energy 

associated with a disturbance is greater than the total 
magnetic energy associated with it. 
Banerjee et al. [10] further extended these energy 
considerations to a more general problem, namely, 
magnetohydrodynamic thermohaline convection problem, of 
Stern’s type and established that in the parameter regime 

1
2 4 1,

RQ σσ
π π

+ ≤ the total kinetic energy associated with a 

disturbance exceeds the sum of its total magnetic and 
thermal energies. A similar characterization theorem in 
magnetothermohaline convection of the Veronis’ type was 
also established by Banerjee et. al in the subsequent year. 
Mohan et al. [11] derived a characterization theorem in 
hydromagnetic double diffusive convection and established 
that the total kinetic energy associated with a disturbance is 
greater than the sum of its total magnetic and concentration 

energies in the parameter regime 1
2 2 4 1

4
SQ Rσ σ

π τ π
+ ≤ . 

Recently, Mohan [12] extended these results to the problems 
of double-diffusive convection coupled with cross-
diffusions. 
 The present analysis extends these energies 
considerations to the hydromagnetic modified thermohaline 
convection problem of Veronis’and Stern’s type 
configurations. The nature of system of equations for the 
present problem is clearly qualitatively different from those 
of thermohaline convection problem and the results are 
obviously not derivable by the method adopted by Banerjee 
et.al and Mohan et.al.in this direction on account of non-
trivial coupling between , and wθ φ⋅ ⋅  in the equation of heat 
conduction. However, a close and critical look at derivation 
of this equation makes one feel that this difficulty can be 
taken care of by an appropriate transformation. The aim of 
the present paper is to construct such a transformation which 
overcomes the above difficulty and enables us to derive the 
desired energy relationship in the present modified set up. 
 
 
2. Mathematical Formulation and Analysis 
 
Following Banerjee et al. [7], the relevant governing 
equations and boundary conditions of the modified 
thermohaline instability in their non-dimensional form are 
given by: 
 

( )
( )

2 2 2 2

2 2 2 2
T S z

pD a D a w

R a R a QD D a h

σ

θ φ

⎛ ⎞− − − =⎜ ⎟⎝ ⎠
− − −

     (1) 

 

( )
( )

2 2
0 2 0 2 3

0 2 0 2 3

ˆ1

ˆ1

D a p T T R p

T w T R w

α θ α φ

α α

− − − − =

− − −
      (2) 

 

2 2 p wD a φ
τ τ

⎛ ⎞− − = −⎜ ⎟⎝ ⎠
      (3) 

 
and  

2 2 1
z

pD a h Dwσ
σ

⎛ ⎞− − = −⎜ ⎟⎝ ⎠
      (4) 

 
ςith 0w θ φ= = =  on both the boundaries, 2 0D w =  on a 
tangent stress–free boundary everywhere, 0Dw =  on a rigid 
boundary, 0zh =  on both the boundaries if the regions 
outside the fluid are perfectly conducting, 
  

1
0

z z

z z

Dh ah at z
Dh ah at z

= − = ⎫
⎬= = ⎭

 if the regions outside the fluid are 

insulating       (5) 
 
The meanings of symbols from physical point of view are as 
follows: z is the vertical coordinate, d/dz is differentiation 
along the vertical direction, a2 is square of horizontal wave 

number, σ υ
κ

=  is the thermal Prandtl number, σ1
υ
η

=  is the 

magnetic Prandtl number, τ 1η
κ

=  is the Lewis number, 

4
1

T
g dR αβ
κυ

=  is the thermal Rayleigh number, 

4
2

S
g dR αβ
κυ

=  is the concentration Rayleigh number, 

2 2 2H dQ µ σ
ρυ

=  is the Chandrasekhar number, w is the 

vertical velocity, θ  is the temperature, φ  is the 
concentration, p is the complex growth rate, 2α  is the 
coefficient of specific heat due to variation in temperature 
and 2α̂  is analogous coefficient due to variation in 
concentration, hz is the vertical magnetic field.  

In (1)–(5), z is real independent variable such that  

0 ≤ z ≤ 1, dD
dz

=  is differentiation w.r.t z , a2 is a constant, 

σ > 0 is a constant, 1σ >0 is a constant, τ  > 0 is a constant, 

TR and RS are positive constants for the Veronis' 
configuration and negative constants for Stern's 

configuration, 3R
β
β
′

=  is the ratio of concentration gradient 

to thermal gradient, p = pr + ipi is complex constant in 
general such that pr and pi are real constants and as a 
consequence the dependent variables w(z) = wr(z) + iwi(z), 
θ (z) = rθ (z) + iiθ (z) and φ (z) = rφ (z) + iiφ (z) are 
complex valued functions(and their real and imaginary parts 
are real valued).  
We now prove the following theorems:  
Theorem 1: If (p, w,θ , φ , hz), p = pr + ipi, pr ≥ 0 is a 
solution of (1) – (4) together with boundary conditions (5) 

with 0TR > SR >0 and 1
2

2 4
1,27

4

SQ Rσ σ
π τ π

′
+ ≤  then  

 

( ) ( )
1 1 1

2 2 2 2 22 2 2
1

0 0 0
z z SDw a w dz Q Dh a h dz R a dzσ σ φ′+ > + +∫ ∫ ∫

 
Proof: Equation (2) upon utilizing (3) can be written as  
 

( ) ( )
( )

2 2 2 2
0 2 0 2 3

0 2

ˆ1

1

D a p T T R p D a

T w

α θ α τ φ

α

− − − − − =

− −
   (6) 



Hari Mohan /Journal of Engineering Science and Technology Review 5 (1) (2012) 51-56 
 

 53 

 
Using the transformations 
 

( )0 2

0 2 3

1 1
ˆ

z z

w w

T
T R

h h

τ α
θ θ φ

α τ
φ φ

=

− −
= +

=

=

%

%

%
%

      (7) 

 
Equations (1), (3), (4) and (6) and the associated boundary 
conditions (5) assume the following forms:  
 

( )
( )

2 2 2 2

2 2 2 2
T S z

pD a D a w

R a R a QD D a h

σ

θ φ

⎛ ⎞− − − =⎜ ⎟⎝ ⎠
′ ′− − −

     (8) 

 
( ){ }2 2

0 21D a p T Bwα θ− − − = −      (9) 

 
2 2 p wD a φ

τ τ
⎛ ⎞− − = −⎜ ⎟⎝ ⎠

    (10) 

 

2 2 1
z

pD a h Dwσ
σ

⎛ ⎞− − = −⎜ ⎟⎝ ⎠
    (11) 

 
with 0w θ φ= = =  on both the boundaries, 2 0D w =  on a 
tangent stress–free boundary everywhere, 0Dw =  on a rigid 
boundary, 0zh =  on both the boundaries if the regions 
outside the fluid are perfectly conducting,  
 

1
0

z z

z z

Dh ah at z
Dh ah at z

= − = ⎫
⎬= = ⎭

 if the regions outside the fluid are 

insulating,      (12) 
 

where 
( )

0 2 3

0 2

ˆ
1 1
T

T
R T RR
T
α τ

τ α
′ =

− −
, SR′ = SR + ( )

0 2 3

0 2

ˆ
1 1
TR T R
T
α τ

τ α− −
, 

 

B= ( ) ( )0 2
0 2

0 2 3

1 1
1 1

ˆ
T

T
T R

τ α
α

α τ
⎧ ⎫− −⎪ ⎪− +⎨ ⎬
⎪ ⎪⎩ ⎭

>0 and the symbol ~ has 

been omitted for convenience. 
Multiplying (11) by *

zh  (the complex conjugate of hz), 
integrating the resulting equation over the range of z by parts 
a suitable number of times, and making use of the boundary 
conditions (12) we get 

 

( )
1 1 1

2 2 22 *1

0 0 0
z z z z

paM Dh a h dz h dz w Dhσ
σ

+ + + = −∫ ∫ ∫  (13) 

 

where ( ) ( ){ }2 2

0 1
0z zM h h= + ≥ . 

Equating the real part of (13), we get 
 

( )
1 1

2 2 22 1

0 0

r
z z z

paM Dh a h dz h dzσ
σ

+ + +∫ ∫  

1
*

0

Re zal part of w Dh dz
⎛ ⎞

= −⎜ ⎟⎜ ⎟⎝ ⎠
∫  

1
*

0
zw Dh dz≤ ∫  

1

0
zw Dh dz≤ ∫  

1/ 2 1/ 21 1
2 2

0 0
zw dz Dh dz

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪≤ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∫ ∫    (14) 

(using Schwartz inequality)  
 
Since rp  ≥ 0, therefore from (14), we get 
 

1/ 2 1/ 21 1 1
2 2 2

0 0 0
z zDh dz w dz Dh dz

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪< ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∫ ∫ ∫  

 
or  
 
1 1

2 2

0 0
zDh dz w dz<∫ ∫     (15) 

 
Using (15), it follows from (14) that 
 

( )
1 1

2 2 22

0 0
z zDh a h dz w dz+ <∫ ∫    (16) 

 
Since w (0) = 0 = w (1), therefore using Rayleigh-Ritz 
inequality [13], we get 
 
1 1

2 2
2

0 0

1w dz Dw dz
π

<∫ ∫     (17) 

 
It follows from (16) and (17) that 
 

( ) ( )
1 1 1

2 2 2 2 22 2
2 2

0 0 0

1 1
z zDh a h dz Dw dz Dw a w dz

π π
+ < < +∫ ∫ ∫  

 
or  

( )
1 1

2 2 22 / 2
1
0 0

z z sQ Dh a h dz R a dzσ σ φ+ +∫ ∫  

( )
1 1

2 2 22 / 21
2
0 0

s
Q Dw a w dz R a dzσ σ φ
π

< + +∫ ∫ (18) 

 
Multiplying (10) by the complex conjugate of (10) and 

integrating by parts over the vertical range of z for an 
appropriate number of times and making use of the boundary 
conditions (12) we get 

 

( ) ( )
1 12 2 2 2 22 2 4 2

0 0
2 1 1

2 2
2 2
0 0

2 2

1

rD a D a dz p D a dz

p
dz w dz

φ φ φ φ φ

φ
τ τ

+ + + +

+ =

∫ ∫

∫ ∫
(19) 

 
Since, rp  ≥ 0, therefore, from (19), we get 
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( )1 12 2 2 22 2 4
2

0 0

12D a D a dz w dzφ φ φ
τ

+ + <∫ ∫   (20) 

 
Since φ (0) = 0 = φ  (1), therefore using Rayleigh-Ritz 
inequality [13], we get 
 

1 1
2 22

0 0

dz D dzπ φ φ<∫ ∫  

 
and also  
 

1 1 224 2

0 0

dz D dzπ φ φ≤∫ ∫  (using Schwartz inequality) (21) 

It follows from (20) and (21) that 
 

( )
1 12 2 22 2

2
0 0

1a dz w dzπ φ
τ

+ <∫ ∫  

 
or  
 

( )22 2 1 1
2 2

2 2 2
0 0

1a
dz w dz

a a

π
φ

τ
+

<∫ ∫ <

( ) ( )
1

2 22
2 2 2 2

0

1 Dw a w dz
a aτ π

+
+ ∫  

 

or 
1

22

4 20

1
27
4

a dzφ
π τ

<∫  ( )
1

2 22

0

Dw a w dz+∫ , 

since the minimum value of 
( )32 2

2

a

a

π +
 for a2 > 0 is 

427
4
π   

 
or  
 

( )
1 1/

2 2 2/ 2 2

4 20 0
27
4

s
s

RR a dz Dw a w dzσσ φ
π τ

< +∫ ∫  (22) 

 
Now from (18) and (22), we get 
 

( )

( )

1 1
2 2 22 / 2

1
0 0

1/
2 221

2
2 4 0

27
4

z z s

s

Q Dh a h dz R a dz

Q R Dw a w dz

σ σ φ

σ σ
π τ π

+ +

⎛ ⎞
⎜ ⎟

< + +⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ ∫

∫
  (23) 

 

Therefore, if 
/

1
2

2 4
1,27

4

sQ Rσ σ
π τ π

+ ≤  then from (23), we get 

 

( ) ( )
1 1

2 2 2 22 2
1

0 0
1

2/ 2

0

z z

s

Dw a w dz Q Dh a h dz

R a dz

σ

σ φ

+ > +

+

∫ ∫

∫
 (24) 

 
and this completes the proof of the theorem.  

We note that the left hand side of (24) represents the 
total kinetic energy associated with a disturbance while the 
right hand side represents the sum of its total magnetic and 
concentration energies, and Theorem 1 may be stated in the 
following equivalent form: 

At the neutral or unstable state in the hydromagnetic 
modified thermohaline convection problem of the Veronis' 
type configuration, the total kinetic energy associated with a 
disturbance is greater than the sum of its total magnetic and 
concentration energies in the parameter regime 

/
1
2

2 4
127

4

sQ Rσ σ
π τ π

+ ≤  and this result is uniformly valid for any 

combination of dynamically free or rigid boundaries that are 
either perfectly conducting or insulating. 
Theorem 2: If (p, w, , , zhθ φ ), p = pr + ipi, pr ≥ 0 is a 
solution of (8) – (11) together with boundary conditions (12) 

with TR < 0, SR  < 0, and 
/ 2

1
2

4
127

4

TR BQ σσ
π π

+ ≤  then  

 

( ) ( )
1 1

2 2 2 22 2
1

0 0
1

2/ 2

0

z z

T

Dw a w dz Q Dh a h dz

R a dz

σ

σ θ

+ > +

+

∫ ∫

∫
 (25) 

 

Proof: Putting T TR R′ ′= −  and S SR R′ ′= − , (8) in the 

present case assume the following form: 
 

( )
( )

2 2 2 2

/ 2 / 2 2 2
T S z

pD a D a w

R a R a QD D a h

σ

θ φ

⎛ ⎞− − − =⎜ ⎟⎝ ⎠
− + − −

  (26) 

 
Proceeding exactly as in Theorem 1, (18) in the present case 
can be written as 
 

( )

( )

1 1
2 2 22 2

1
0 0
1 1

2 2 22 21
2
0 0

z z T

T

Q Dh a h dz R a dz

Q Dw a w dz R a dz

σ σ θ

σ σ φ
π

′+ +

′< + +

∫ ∫

∫ ∫
  (27) 

 
Multiplying (9) by the complex conjugate of (9) and 

integrating by parts over the vertical range of z for an 
appropriate number of times and making use of the boundary 
conditions (12) we get 
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( )
( ) ( )
( )

1 2 2 22 2 4

0
1

2 22
0 2

0
1 1

22 2 22
0 2

0 0

2

2 1

1

r

D a D a dz

p T D a dz

p T dz B w dz

θ θ θ

α θ θ

α θ

+ +

+ − +

+ − =

∫

∫

∫ ∫

   (28) 

 
Since, rp  ≥ 0, therefore from (28), we get 
 

( )1 12 2 2 22 2 4 2

0 0

2D a D a dz B w dzθ θ θ+ + <∫ ∫   (29) 

 
Since θ (0) = 0 = θ  (1), therefore using Rayleigh-Ritz 
inequality [9], we get 
 

1 1
2 22

0 0

dz D dzπ θ θ<∫ ∫  

 
and also  
 

1 1 224 2

0 0

dz D dzπ θ θ≤∫ ∫  (using Schwartz inequality)  (30) 

 
It follows from (29) and (30) that 
 

( )
1 12 2 22 2 2

0 0

a dz B w dzπ θ+ <∫ ∫  

or  
 

( )22 2 1 12
2 2

2 2
0 0

a Bdz w dz
a a

π
θ

+
<∫ ∫ <

( ) ( )
12

2 22
2 2 2

0

B Dw a w dz
a aπ

+
+ ∫  

 
or  
 

1 2
22

40
27
4

Ba dzθ
π

<∫  ( )
1

2 22

0

Dw a w dz+∫  , 

since the minimum value of 
( )32 2

2

a

a

π +
 for a2 > 0 is 

427
4
π . 

or  

( )
1 12

2 2 22 2

40 0
27
4

T
T

R B
R a dz Dw a w dz

σ
σ θ

π

′
′ < +∫ ∫   (31) 

 
Now from (27) and (31), we get 

( )

( )

1 1
2 2 22 2

1
0 0

12
2 221

2 2
4 027

4

z z T

T

Q Dh a h dz R a dz

R BQ Dw a w dz

σ σ θ

σσ
π π

′+ +

⎛ ⎞
⎜ ⎟′
⎜ ⎟< + +
⎜ ⎟
⎜ ⎟⎝ ⎠

∫ ∫

∫
.  (32) 

 

Therefore, if 
2

1
2

4
1,27

4

TR BQ σσ
π π

′
+ ≤  then from (32), we get 

 

( ) ( )
1 1

2 2 2 22 2
1

0 0
1

22

0

z z

T

Dw a w dz Q Dh a h dz

R a dz

σ

σ θ

+ > +

′+

∫ ∫

∫
 (33) 

 
and this completes the proof of the theorem.  

We note that the left hand side of (33) represents the 
total kinetic energy associated with a disturbance while the 
right hand side represents the sum of its total magnetic and 
thermal energies and Theorem 2 may be stated in the 
following equivalent form: 

At the neutral or unstable state in the hydromagnetic 
modified thermohaline convection problem of the Stern’s 
type configuration, the total kinetic energy associated with a 
disturbance is greater than the sum of its total magnetic and 
thermal energies in the parameter regime 

2
1
2

4
127

4

TR BQ σσ
π π

′
+ ≤  and this result is uniformly valid for 

any combination of dynamically free or rigid boundaries that 
are either perfectly conducting or insulating. 

 
 

3. Conclusions 
 
In the present paper, the hydromagnetic modified 
thermohaline convection problem of Veronis’ and Stern’s 
type configuration is considered. The analysis made brings 
out the following main conclusions: 
i. At the neutral or unstable state in the 

magnetohydrodynamic thermohaline convection 
problem of the Veronis’ type configuration, the total 
kinetic energy associated with a disturbance is greater 
than the sum of its total magnetic and concentration 
energies in the parameter regime 

1
2

2 4
127

4

SQ Rσ σ
π τ π

′
+ ≤ and this result is uniformly valid for 

any combination of dynamically free or rigid 
boundaries that are either perfectly conducting or 
insulating. 

ii. At the neutral or unstable state in the hydromagnetic 
modified thermohaline convection problem of the 
Stern's type configuration, the total kinetic energy 
associated with a disturbance is greater than sum of its 
total magnetic and thermal energies in the parameter 

regime 
/

1
2

4
127

4

TRQ σσ
π π

+ ≤  and this result is uniformly 

valid for any combination of dynamically free or rigid 
boundaries that are either perfectly conducting or 
insulating. 



Hari Mohan /Journal of Engineering Science and Technology Review 5 (1) (2012) 51-56 
 

 56 

______________________________ 
References 

 
1. A. Brandt and H.J.S. Fernando, American Geophysical Union 

(1996). 
2. N. J. Balmforth, S. A. Ghadge, A. Kettapum and S.D. Mandre, J. 

Fluid Mech. 569, 29 (2006). 
3. M. S. Malashetty and B. S. Biradar, Phys. Fluids 23, doi: 10. 

1063/1.3601482, 2011. 
4. E.H. Huppert and J. S. Turner, J. Fluid Mech. 106 (2006) 299.    
5. M .E. Stern, Tellus, 12 (1960) 172.  
6. G. Veronis, J.Mars. Res., 1 (1965) 23. 
7. M.B. Banerjee, J.R. Gupta, R.G. Shandil, K.C. Sharma and D.C. 

Katoch, .Math.Phy.Sci. 17 (1983) 603. 

8. S.Chandrasekhar, Philos. Mag. 43, 501 (1952). 
9. M.B. Banerjee and S.P Katyal, J. Math. Anal. Appl. 129 383 

(1988). 
10. M.B. Banerjee, J.R. Gupta and S.P. Katyal, Indian J. Pure 

Appl.Math. 18(9) (1987) 865.  
11. H. Mohan, P. Kumar and P. Devi, Ganita. 57(2) (2006) 149. 
12. H. Mohan, Studia Geo. Tech. et Mech. XXXII, 23 (2010). 
13. M.H Schultz, Spline Analysis, Prentice-Hall, Englewood Cliffs, 

N.J. (1973). 
 

 
 
 


